6,840 research outputs found
Electromagnetism and multiple-valued loop-dependent wave functionals
We quantize the Maxwell theory in the presence of a electric charge in a
"dual" Loop Representation, i.e. a geometric representation of magnetic
Faraday's lines. It is found that the theory can be seen as a theory without
sources, except by the fact that the wave functional becomes multivalued. This
can be seen as the dual counterpart of what occurs in Maxwell theory with a
magnetic pole, when it is quantized in the ordinary Loop Representation. The
multivaluedness can be seen as a result of the multiply-connectedness of the
configuration space of the quantum theory.Comment: 5 page
Spatially resolved physical and chemical properties of the planetary nebula NGC 3242
Optical integral-field spectroscopy was used to investigate the planetary
nebula NGC 3242. We analysed the main morphological components of this source,
including its knots, but not the halo. In addition to revealing the properties
ofthe physical and chemical nature of this nebula, we also provided reliable
spatially resolved constraints that can be used for future photoionisation
modelling of the nebula. The latter is ultimately necessary to obtain a fully
self-consistent 3D picture of the physical and chemical properties of the
object. The observations were obtained with the VIMOS instrument attached to
VLT-UT3. Maps and values for specific morphological zones for the detected
emission-lines were obtained and analysed with routines developed by the
authors to derive physical and chemical conditions of the ionised gas in a 2D
fashion. We obtained spatially resolved maps and mean values of the electron
densities, temperatures, and chemical abundances, for specific morphological
structures in NGC 3242. These results show the pixel-to-pixel variations of the
the small- and large-scale structures of the source. These diagnostic maps
provide information free from the biases introduced by traditional single
long-slit observations. In general, our results are consistent with a uniform
abundance distribution for the object, whether we look at abundance maps or
integrated fluxes from specified morphological structures. The results indicate
that special care should be taken with the calibration of the data and that
only data with extremely good signal-to-noise ratio and spectral coverage
should be used to ensure the detection of possible spatial variations.Comment: 11 pages, 8 figures accepted for publication in Astronomy &
Astrophysic
The measurement of velocity gradients in laminar flow by homodyne light-scattering spectroscopy
A technique for measuring velocity gradients in laminar flows by homodyne light
scattering is presented. A theory which describes the light-scattering spectrum is
derived that includes the effects of different types of linear flow fields, particle diffusion
and the intensity profile in the scattering volume. The conditions which must be
satisfied in order that the theory describe the experimental situation are outlined and
complementary experiments are performed which both verify the theory and apply
the technique. Verification is provided using the flow in a Couette device, and the flow
due to single rotating cylinder in a large bath of fluid. The technique is then applied
to measure the spatial variation of the shear rate in a four-roll mill
Magnetic fields around evolved stars: further observations of HO maser polarization
We aim to detect the magnetic field and infer its properties around four AGB
stars using HO maser observations. The sample we observed consists of the
following sources: the semi-regular variable RT Vir and the Mira variables AP
Lyn, IK Tau, and IRC+60370. We observed the 6 HO maser
rotational transition, in full-polarization mode, to determine its linear and
circular polarization. Based on the Zeeman effect, one can infer the properties
of the magnetic field from the maser polarization analysis. We detected a total
of 238 maser features, in three of the four observed sources. No masers were
found toward AP Lyn. The observed masers are all located between 2.4 and 53.0
AU from the stars. Linear and circular polarization was found in 18 and 11
maser features, respectively. We more than doubled the number of AGB stars in
which magnetic field has been detected from HO maser polarization, as our
results confirm the presence of fields around IK Tau, RT Vir and IRC+60370. The
strength of the field along the line of sight is found to be between 47 and 331
mG in the HO maser region. Extrapolating this result to the surface of the
stars, assuming a toroidal field ( r), we find magnetic fields
of 0.3-6.9 G on the stellar surfaces. If, instead of a toroidal field, we
assume a poloidal field ( r), then the extrapolated magnetic
field strength on the stellar surfaces are in the range between 2.2 and
115 G. Finally, if a dipole field ( r) is assumed, the
field strength on the surface of the star is found to be between 15.8 and
1945 G. The magnetic energy of our sources is higher than the thermal and
kinetic energy in the HO maser region of this class of objects. This leads
us to conclude that, indeed, magnetic fields probably play an important role in
shaping the outflows of evolved stars. (abridged)Comment: 15 pages, 5 figures, 7 tables. Accepted for publication in A&
Recommended from our members
Control of pool boiling incipience in confined space: dynamic morphing of the wall effect
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.A new active heat transfer enhancement and control technique is proposed in this work. One of the major aims of the technique is to decrease pool boiling incipience temperature by dynamic morphing imposed to confinement wall. Dynamic deformation generates variation of pressure which increases the fluid metastability level. An experimental device was built to evaluate boiling incipience temperature. Experimental results were compared with hydrodynamic and nucleation models.CNRS Energie CITAMPE PR09-3.1.3-2 and FNRAE SYRTIP
The detached dust shells around the carbon AGB stars R Scl and V644 Sco
Detached shells are believed to be created during a thermal pulse, and
constrain the time scales and physical properties of one of the main drivers of
late stellar evolution. We aim at determining the morphology of the detached
dust shells around the carbon AGB stars R Scl and V644 Sco, and compare this to
observations of the detached gas shells. We observe the polarised,
dust-scattered stellar light around these stars using the PolCor instrument
mounted on the ESO 3.6m telescope. Observations were done with a coronographic
mask to block out the direct stellar light. The polarised images clearly show
the detached shells. Using a dust radiative transfer code to model the
dust-scattered polarised light, we constrain the radii and widths of the shells
to 19.5 arcsec and 9.4 arcsec for the detached dust shells around R Scl and
V644 Sco, respectively. Both shells have an overall spherical symmetry and
widths of approx. 2 arcsec. For R Scl we can compare the observed dust emission
directly with high spatial-resolution maps of CO(3-2) emission from the shell
observed with ALMA. We find that the dust and gas coincide almost exactly,
indicating a common evolution. The data presented here for R Scl are the most
detailed observations of the entire dusty detached shell to date. For V644 Sco
these are the first direct measurements of the detached shell. Also here we
find that the dust most likely coincides with the gas shell. The observations
are consistent with a scenario where the detached shells are created during a
thermal pulse. The determined radii and widths will constrain hydrodynamical
models describing the pre-pulse mass loss, the thermal pulse, and post-pulse
evolution of the star
Current and Emerging Molecular Tests for Human Papillomavirus–Related Neoplasia in the Genomic Era
Laboratory tests have a key role in preventing human papillomavirus (HPV)-driven carcinomas and in guiding therapeutic interventions. An understanding of the virology, immunology, and carcinogenesis of HPV is essential for choosing appropriate diagnostic test modalities and developing new and even more effective cancer prevention strategies. HPV infects basal epithelial cells on multiple surfaces and induces carcinoma primarily in the cervix and the oropharynx. HPV types are stratified as high risk or low risk based on their carcinogenic potential. During oncogenesis, HPV interferes with cell cycle regulation and incites DNA damage responses that thwart apoptosis and enable mutations to accumulate. Such mutations are an adverse effect of innate and adaptive antiviral immune responses that up-regulate DNA-editing enzymes, with natural selection of cells having a chromosomally integrated viral genome lacking expression of viral proteins targeted by the immune system. Infected cancers share a similar mutation signature, reflecting the effect of apolipoprotein B mRNA-editing catalytic polypeptide enzyme DNA-editing enzymes. It is feasible that genomic tests for characteristic mutations or methylation signatures, along with tests for dysregulated HPV gene expression, add value in predicting behavior of premalignant lesions. Furthermore, these tumor markers in cell-free DNA of plasma or body fluids may one day assist in early detection or monitoring cancer burden during treatment
Formation of Nanopillar Arrays in Ultrathin Viscous Films: The Critical Role of Thermocapillary Stresses
Experiments by several groups during the past decade have shown that a molten
polymer nanofilm subject to a large transverse thermal gradient undergoes
spontaneous formation of periodic nanopillar arrays. The prevailing explanation
is that coherent reflections of acoustic phonons within the film cause a
periodic modulation of the radiation pressure which enhances pillar growth. By
exploring a deformational instability of particular relevance to nanofilms, we
demonstrate that thermocapillary forces play a crucial role in the formation
process. Analytic and numerical predictions show good agreement with the pillar
spacings obtained in experiment. Simulations of the interface equation further
determine the rate of pillar growth of importance to technological
applications.Comment: 5 pages, 4 figure
The scenario of two-dimensional instabilities of the cylinder wake under EHD forcing: A linear stability analysis
We propose to study the stability properties of an air flow wake forced by a dielectric barrier discharge (DBD) actuator, which is a type of electrohydrodynamic (EHD) actuator. These actuators add momentum to the flow around a cylinder in regions close to the wall and, in our case, are symmetrically disposed near the boundary layer separation point.
Since the forcing frequencies, typical of DBD, are much higher than the natural shedding frequency of the flow, we will be considering the forcing actuation as stationary.
In the first part, the flow around a circular cylinder modified by EHD actuators will be experimentally studied by means of particle image velocimetry (PIV). In the second part, the EHD actuators have been numerically implemented as a boundary condition on the cylinder surface. Using this boundary condition, the computationally obtained base flow is then compared with the experimental one in order to relate the control parameters from both methodologies.
After validating the obtained agreement, we study the Hopf bifurcation that appears once the flow starts the vortex shedding through experimental and computational approaches. For the base flow derived from experimentally obtained snapshots, we monitor the evolution of the velocity amplitude oscillations. As to the computationally obtained base flow, its stability is analyzed by solving a global eigenvalue problem obtained from the linearized Navier–Stokes equations. Finally, the critical parameters obtained from both approaches are compared
- …