10,444 research outputs found
Attraction of Culex mosquitoes to aldehydes from human emanations.
Anecdotes related to preferential mosquito bites are very common, but to date there is no complete explanation as to why one out of two people systematically receives more mosquito bites than the other when both are equally accessible. Here we tested the hypothesis that two constituents of skin emanations, 6-methyl-5-heptan-2-one (6-MHO) and geranylacetone (GA), are natural repellents and may account for differential attraction in different ratios. We studied skin emanations from two human subjects, confirmed in behavioral assays that female southern house mosquitoes are significantly more attracted to subject A (attractant) than to subject N (non-attractant), and tested their 6-MHO/GA ratios in a dual-choice olfactometer. Although repelling at high doses, 6-MHO/GA mixtures were not active at the levels emitted by human skin. We found, however, differential attraction elicited by the aldehydes in the ratios produced by subjects A and N. When tested in a dose commensurate with the level released from human skin and in the ratio produced by subject A, the aldehyde mixture significantly attracted mosquitoes. By contrast, an aldehyde mixture at the same ratio released by subject N did not attract mosquitoes. We, therefore, hypothesized that aldehydes may play a role in the commonly observed differential attraction
The creeping motion of a spherical particle normal to a deformable interface
Numerical results are presented for the approach of a rigid sphere normal to a deformable fluid-fluid interface in the velocity range for which inertial effects may be neglected. Both the case of a sphere moving with constant velocity, and that of a sphere moving under the action of a constant non-hydrodynamic body force are considered for several values of the viscosity ratio, density difference and interfacial tension between the two fluids. Two distinct modes of interface deformation are demonstrated: a film drainage mode in which fluid drains away in front of the sphere leaving an ever-thinning film, and a tailing mode where the sphere passes several radii beyond the plane of the initially undeformed interface, while remaining encapsulated by the original surrounding fluid which is connected with its main body by a thin thread-like tail behind the sphere. We consider the influence of the viscosity ratio, density difference, interfacial tension and starting position of the sphere in deter-mining which of these two modes of deformation will occur
Small-amplitude perturbations of shape for a nearly spherical bubble in an inviscid straining flow (steady shapes and oscillatory motion)
The method of domain perturbations is used to study the problem of a nearly spherical bubble in an inviscid, axisymmetric straining flow. Steady-state shapes and axisymmetric oscillatory motions are considered. The steady-state solutions suggest the existence of a limit point at a critical Weber number, beyond which no solution exists on the steady-state solution branch which includes the spherical equilibrium state in the absence of flow (e.g. the critical value of 1.73 is estimated from the third-order solution). In addition, the first-order steady-state shape exhibits a maximum radius at θ = 1/6π which clearly indicates the barrel-like shape that was found earlier via numerical finite-deformation theories for higher Weber numbers. The oscillatory motion of a nearly spherical bubble is considered in two different ways. First, a small perturbation to a spherical base state is studied with the ad hoc assumption that the steady-state shape is spherical for the complete Weber-number range of interest. This analysis shows that the frequency of oscillation decreases as Weber number increases, and that a spherical bubble shape is unstable if Weber number is larger than 4.62. Secondly, the correct steady-state shape up to O(W) is included to obtain a rigorous asymptotic formula for the frequency change at small Weber number. This asymptotic analysis also shows that the frequency decreases as Weber number increases; for example, in the case of the principal mode (n = 2), ω^2 = ω_0^0(1−0.31W), where ω_0 is the oscillation frequency of a bubble in a quiescent fluid
Bubble dynamics in time-periodic straining flows
The dynamics and breakup of a bubble in an axisymmetric, time-periodic straining flow has been investigated via analysis of an approximate dynamic model and also by time-dependent numerical solutions of the full fluid mechanics problem. The analyses reveal that in the neighbourhood of a stable steady solution, an O(ϵ1/3) time-dependent change of bubble shape can be obtained from an O(ε) resonant forcing. Furthermore, the probability of bubble breakup at subcritical Weber numbers can be maximized by choosing an optimal forcing frequency for a fixed forcing amplitude
Motion of a sphere in the presence of a plane interface. Part 2. An exact solution in bipolar co-ordinates
A general solution for Stokes’ equation in bipolar co-ordinates is derived, and then applied to the arbitrary motion of a sphere in the presence of a plane fluid/fluid interface. The drag force and hydrodynamic torque on the sphere are then calculated for four specific motions of the sphere; namely, translation perpendicular and parallel to the interface and rotation about an axis which is perpendicular and parallel, respectively, to the interface. The most significant result of the present work is the comparison between these numerically exact solutions and the approximate solutions from part 1. The latter can be generalized to a variety of particle shapes, and it is thus important to assess their accuracy for this case of spherical particles where an exact solution can be obtained. In addition to comparisons with the approximate solutions, we also examine the predicted changes in the velocity, pressure and vorticity fields due to the presence of the plane interface. One particularly interesting feature of the solutions is the fact that the direction of rotation of a freely suspended sphere moving parallel to the interface can either be the same as for a sphere rolling along the interface (as might be intuitively expected), or opposite depending upon the location of the sphere centre and the ratio of viscosities for the two fluids
Recommended from our members
CO2 per se activates carbon dioxide receptors.
Carbon dioxide has been used in traps for more than six decades to monitor mosquito populations and help make informed vector management decisions. CO2 is sensed by gustatory receptors (GRs) housed in neurons in the maxillary palps. CO2-sensitive GRs have been identified from the vinegar fly and mosquitoes, but it remains to be resolved whether these receptors respond to CO2 or bicarbonate. As opposed to the vinegar fly, mosquitoes have three GR subunits, but it is assumed that subunits GR1 and GR3 form functional receptors. In our attempt to identify the chemical species that bind these receptors, we discovered that GR2 and GR3 are essential for receptor function and that GR1 appears to function as a modulator. While Xenopus oocytes coexpressing Culex quinquefasciatus subunits CquiGR1/3 and CquiGR1/2 were not activated, CquiGR2/3 gave robust responses to sodium bicarbonate. Interestingly, CquiGR1/2/3-coexpressing oocytes gave significantly lower responses. That the ternary combination is markedly less sensitive than the GR2/GR3 combination was also observed with orthologs from the yellow fever and the malaria mosquito. By comparing responses of CquiGR2/CquiGR3-coexpressing oocytes to sodium bicarbonate samples (with or without acidification) and measuring the concentration of aqueous CO2, we showed that there is a direct correlation between dissolved CO2 and receptor response. We then concluded that subunits GR2 and GR3 are essential for these carbon dioxide-sensitive receptors and that they are activated by CO2 per se, not bicarbonate
Faceted anomalous scaling in the epitaxial growth of semiconductor films
We apply the generic dynamical scaling theory (GDST) to the surfaces of CdTe
polycrystalline films grown in glass substrates. The analysed data were
obtained with a stylus profiler with an estimated resolution lateral resolution
of m. Both real two-point correlation function and power spectrum
analyses were done. We found that the GDST applied to the surface power spectra
foresees faceted morphology in contrast with the self-affine surface indicated
by the local roughness exponent found via the height-height correlation
function. This inconsistency is explained in terms of convolution effects
resulting from the finite size of the probe tip used to scan the surfaces. High
resolution AFM images corroborates the predictions of GDST.Comment: to appear in Europhysics Letter
Buoyancy-driven motion of a deformable drop toward a planar wall at low Reynolds number
The slow viscous motion of a deformable drop moving normal to a planar wall is studied numerically. In particular, a boundary integral technique employing the Green's function appropriate to a no-slip planar wall is used. Beginning with spherical drop shapes far from the wall, highly deformed and ‘dimpled’ drop configurations are obtained as the planar wall is approached. The initial stages of dimpling and their evolution provide information and insight into the basic assumptions of film-drainage theory
Relation entre l'éfficacité biologique et le comportement chimique du Bifenox dans le sol d'une culture d'orge d'hiver.
Ce travail a comme objectif l'étude du comportement du Bifenox, un herbicide de La famille des diphénylétheres, le methyl 5 - (2,4 - dichloro-phenoxy)- 2- nitrobenzoate,
dans le sol d'une culture d'orge d'hiver.
On envisage la persistance dans le sol de ses résidus et d'un de ses metabolites potentiels, le nitroféne. Cela en function du temps et de la profondeur pour evaluer sa
phytotoxicité. Cette étude a été entreprise par l'intermédiaire d'analyses chimiques et biologiques. En plus, nous avons effectué des observations biologiques, concernant leur efficacité à l'égard des plantes
adventices presentes dans cet essai
Protein folding, metal ions and conformational states: the case of a di-cluster ferredoxin
Dissertation presented to obtain the PhD degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaMetal ions are present in over thirty percent of known proteins. Apart from a well
established function in catalysis and electron transfer, metals and metal centres
are also important structural elements which may as well play a key role in
modulating protein folding and stability. In this respect, cofactors can act not only
as local structural stabilizing elements in the native state, contributing to the
maintenance of a given specific structural fold, but may also function as potential
nucleation points during the protein folding process...Fundação para a Ciência e Tecnologia is acknowledged for financial support, by
awarding a PhD Grant SFRH/BD/18653/2004. This work has been funded by the projects POCTI/QUI/37521; POCTI/QUI/45758
and PTDC/QUI/70101 all to Cláudio M. Gomes
- …