1,940 research outputs found

    Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma

    Full text link
    We present results from the first self-consistent multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. We simulate two dimensional magnetic reconnection in a Harris current sheet with a numerical model which includes ion-neutral scattering collisions, ionization, recombination, optically thin radiative loss, collisional heating, and thermal conduction. In the resulting tearing mode reconnection the neutral and ion fluids become decoupled upstream from the reconnection site, creating an excess of ions in the reconnection region and therefore an ionization imbalance. Ion recombination in the reconnection region, combined with Alfv\'{e}nic outflows, quickly removes ions from the reconnection site, leading to a fast reconnection rate independent of Lundquist number. In addition to allowing fast reconnection, we find that these non-equilibria partial ionization effects lead to the onset of the nonlinear secondary tearing instability at lower values of the Lundquist number than has been found in fully ionized plasmas.These simulations provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets.Comment: 8 Figures, 32 pages tota

    Iron released from transferrin at acidic pH can catalyse the oxidation of low density lipoprotein

    Get PDF
    AbstractLow density lipoprotein (LDL) oxidation within the arterial wall may contribute to the disease of atherosclerosis. We have investigated the conditions under which transferrin (the major iron-carrying protein in plasma) may release iron ions to catalyse the oxidation of LDL. Transferrin that had been incubated at pH 5.5 released approximately 10% of its bound iron in 24 h, as measured by ultrafiltration and atomic absorption spectroscopy. Furthermore, transferrin co-incubated with LDL and l-cysteine at pH 5.5 resulted in the oxidation of the LDL as measured by thiobarbituric acid-reactive substances and electrophoretic mobility. This effect was observed at transferrin concentrations as low as 40% of its average plasma concentration. The release of iron from transferrin in atherosclerotic lesions due to a localised acidic pH may help to explain why LDL oxidation occurs in these lesions

    Structural Examination of Au/Ge(001) by Surface X-Ray Diffraction and Scanning Tunneling Microscopy

    Full text link
    The one-dimensional reconstruction of Au/Ge(001) was investigated by means of autocorrelation functions from surface x-ray diffraction (SXRD) and scanning tunneling microscopy (STM). Interatomic distances found in the SXRD-Patterson map are substantiated by results from STM. The Au coverage, recently determined to be 3/4 of a monolayer of gold, together with SXRD leads to three non-equivalent positions for Au within the c(8x2) unit cell. Combined with structural information from STM topography and line profiling, two building blocks are identified: Au-Ge hetero-dimers within the top wire architecture and Au homo-dimers within the trenches. The incorporation of both components is discussed using density functional theory and model based Patterson maps by substituting Germanium atoms of the reconstructed Ge(001) surface.Comment: 5 pages, 3 figure
    • …
    corecore