81 research outputs found

    Smoking trends among adolescents from 1990 to 2002 in ten European countries and Canada

    Get PDF
    BACKGROUND: Daily smoking adolescents are a public health problem as they are more likely to become adult smokers and to develop smoking-related health problems later on in their lives. METHODS: The study is part of the four-yearly, cross-national Health Behaviour in School-aged Children study, a school-based survey on a nationally representative sample using a standardised methodology. Data of 4 survey periods are available (1990–2002). Gender-specific daily smoking trends among 14–15 year olds are examined using logistic regressions. Sex ratios are calculated for each survey period and country. Interaction effects between period and gender are examined. RESULTS: Daily smoking prevalence in boys in 2002 ranges from 5.5% in Sweden to 20.0% in Latvia. Among girls, the daily smoking prevalence in 2002 ranges from 8.9% in Poland to 24.7% in Austria. Three daily smoking trend groups are identified: countries with a declining or stagnating trend, countries with an increasing trend followed by a decreasing trend, and countries with an increasing trend. These trend groups show a geographical pattern, but are not linked to smoking prevalence. Over the 4 surveys, the sex ratio has changed in Belgium, Switzerland, and Latvia. CONCLUSION: Among adolescents in Europe, three groups of countries in a different stage of the smoking epidemic curve can be identified, with girls being in an earlier stage than boys. In 2002, large differences in smoking prevalence between the countries have been observed. This predicts a high mortality due to smoking over 20–30 years for some countries, if no policy interventions are taken

    Modelling an integrated impact of fire, explosion and combustion products during transitional events caused by an accidental release of LNG

    Get PDF
    In a complex processing facility, there is likelihood of occurrence of cascading scenarios, i.e. hydrocarbon release, fire, explosion and dispersion of combustion products. The consequence of such scenarios, when combined, can be more severe than their individual impact. Hence, actual impact can be only representedby integration of above mentioned events. A novel methodology is proposed to model an evolving accident scenario during an incidental release of LNG in a complex processing facility. The methodology is applied to a case study considering transitional scenarios namely spill, pool formation and evaporation of LNG, dispersion of natural gas, and the consequent fire, explosion and dispersion of combustion products using Computational Fluid Dynamics (CFD). Probit functions are employed to analyze individual impacts and a ranking method is used to combine various impacts to identify risk during the transitional events.The results confirmed that in a large and complex facility, an LNG fire can transit to a vapor cloud explosion ifthe necessary conditions are met, i.e.the flammable range, ignition source with enough energy and congestion/confinement level. Therefore, the integrated consequences are more severe than those associated with the individual ones, and need to be properly assessed. This study would provide an insight for an effective analysis of potential consequences of an LNG spill in any LNG processing facility and it can be useful for the safety measured design of process facilities

    The OSU1/QUA2/TSD2-Encoded Putative Methyltransferase Is a Critical Modulator of Carbon and Nitrogen Nutrient Balance Response in Arabidopsis

    Get PDF
    The balance between carbon (C) and nitrogen (N) nutrients must be tightly coordinated so that cells can optimize their opportunity for metabolism, growth and development. However, the C and N nutrient balance perception and signaling mechanism remains poorly understood. Here, we report the isolation and characterization of two allelic oversensitive to sugar1 mutants (osu1-1, osu1-2) in Arabidopsis thaliana. Using the cotyledon anthocyanin accumulation and root growth inhibition assays, we show that the osu1 mutants are more sensitive than wild-type to both of the imbalanced C/N conditions, high C/low N and low C/high N. However, under the balanced C/N conditions (low C/low N or high C/high N), the osu1 mutants have similar anthocyanin levels and root lengths as wild-type. Consistently, the genes encoding two MYB transcription factors (MYB75 and MYB90) and an Asn synthetase isoform (ASN1) are strongly up-regulated by the OSU1 mutation in response to high C/low N and low C/high N, respectively. Furthermore, the enhanced sensitivity of osu1-1 to high C/low N with respect to anthocyanin accumulation but not root growth inhibition can be suppressed by co-suppression of MYB75, indicating that MYB75 acts downstream of OSU1 in the high C/low N imbalance response. Map-based cloning reveals that OSU1 encodes a member of a large family of putative methyltransferases and is allelic to the recently reported QUA2/TSD2 locus identified in genetic screens for cell-adhesion-defective mutants. Accumulation of OSU1/QUA2/TSD2 transcript was not regulated by C and N balance, but the OSU1 promoter was slightly more active in the vascular system. Taken together, our results show that the OSU1/QUA2/TSD2-encoded putative methyltransferase is required for normal C/N nutrient balance response in plants

    S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway

    Get PDF
    Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.5540

    Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue

    No full text
    In wild-type Nicotiana plumbaginifolia Viv. and other higher plants, nitrate reductase (NR) is regulated at the post-translational level and is rapidly inactivated in response to, for example, a light-to-dark transition. This inactivation is caused by phosphorylation of a conserved regulatory serine residue, Ser 521 in tobacco, and interaction with divalent cations or polyamines, and 14-3-3 proteins. The physiological importance of the post-translational NR modulation is presently under investigation using a transgenic N. plumbaginifolia line. This line expresses a mutated tobacco NR where Ser 521 has been changed into aspartic acid (Asp) by site-directed mutagenesis, resulting in a permanently active NR enzyme [C. Lillo et al. (2003) Plant J 35:566-573]. When cut leaves or roots of this line (S-521) were placed in darkness in a buffer containing 50 mM KNO3, nitrite was excreted from the tissue at rates of 0.08-0.2 mumol (g FW)(-1) h(-1) for at least 5 h. For the control transgenic plant (C1), which had the regulatory serine of NR intact, nitrite excretion was low and halted completely after 1-3 h. Without nitrate in the buffer in which the tissue was immersed, nitrite excretion was also low for S-521, although 20-40 mumol (g FW)(-1) nitrate was present inside the tissue. Apparently, stored nitrate was not readily available for reduction in darkness. Leaf tissue and root segments of S-521 also emitted much more nitric oxide (NO) than the control. Importantly, NO emission from leaf tissue of S-521 was higher in the dark than in the light, opposite to what was usually observed when post-translational NR modulation was operating
    • 

    corecore