8,398 research outputs found

    Dynamical control of qubit coherence: Random versus deterministic schemes

    Get PDF
    We revisit the problem of switching off unwanted phase evolution and decoherence in a single two-state quantum system in the light of recent results on random dynamical decoupling methods [L. Viola and E. Knill, Phys. Rev. Lett. {\bf 94}, 060502 (2005)]. A systematic comparison with standard cyclic decoupling is effected for a variety of dynamical regimes, including the case of both semiclassical and fully quantum decoherence models. In particular, exact analytical expressions are derived for randomized control of decoherence from a bosonic environment. We investigate quantitatively control protocols based on purely deterministic, purely random, as well as hybrid design, and identify their relative merits and weaknesses at improving system performance. We find that for time-independent systems, hybrid protocols tend to perform better than pure random and may improve over standard asymmetric schemes, whereas random protocols can be considerably more stable against fluctuations in the system parameters. Beside shedding light on the physical requirements underlying randomized control, our analysis further demonstrates the potential for explicit control settings where the latter may significantly improve over conventional schemes.Comment: 21 pages, 15 figures, to appear in Physical Review A, 72 (2005

    Nonequilibrium many-body quantum dynamics: from full random matrices to real systems

    Full text link
    We present an overview of our studies on the nonequilibrium dynamics of quantum systems that have many interacting particles. Our emphasis is on systems that show strong level repulsion, referred to as chaotic systems. We discuss how full random matrices can guide and support our studies of realistic systems. We show that features of the dynamics can be anticipated from a detailed analysis of the spectrum and the structure of the initial state projected onto the energy eigenbasis. On the other way round, if we only have access to the dynamics, we can use it to infer the properties of the spectrum of the system. Our focus is on the survival probability, but results for other observables, such as the spin density imbalance and Shannon entropy are also mentioned.Comment: 14 pages, 7 figures, chapter for the book "Thermodynamics in the Quantum Regime - Recent Progress and Outlook

    Weak and strong typicality in quantum systems

    Full text link
    We study the properties of mixed states obtained from eigenstates of many-body lattice Hamiltonians after tracing out part of the lattice. Two scenarios emerge for generic systems: (i) the diagonal entropy becomes equivalent to the thermodynamic entropy when a few sites are traced out (weak typicality); and (ii) the von Neumann (entanglement) entropy becomes equivalent to the thermodynamic entropy when a large fraction of the lattice is traced out (strong typicality). Remarkably, the results for few-body observables obtained with the reduced, diagonal, and canonical density matrices are very similar to each other, no matter which fraction of the lattice is traced out. Hence, for all physical quantities studied here, the results in the diagonal ensemble match the thermal predictions.Comment: 6 pages, 7 figures, as publishe
    corecore