16 research outputs found
The Undergraduate Training in Genomics (UTRIG) Initiative: Early & Active Training for Physicians in the Genomic Medicine Era
Genomic medicine is transforming patient care. However, the speed of development has left a knowledge gap between discovery and effective implementation into clinical practice. Since 2010, the Training Residents in Genomics (TRIG) Working Group has found success in building a rigorous genomics curriculum with implementation tools aimed at pathology residents in postgraduate training years 1-4. Based on the TRIG model, the interprofessional Undergraduate Training in Genomics (UTRIG) Working Group was formed. Under the aegis of the Undergraduate Medical Educators Section of the Association of Pathology Chairs and representation from nine additional professional societies, UTRIG\u27s collaborative goal is building medical student genomic literacy through development of a ready-to-use genomics curriculum. Key elements to the UTRIG curriculum are expert consensus-driven objectives, active learning methods, rigorous assessment and integration
DICER1 mutations in childhood cystic nephroma and its relationship to DICER1-renal sarcoma
The pathogenesis of cystic nephroma of the kidney has interested pathologists for over 50 years. Emerging from its initial designation as a type of unilateral multilocular cyst, cystic nephroma has been considered as either a developmental abnormality or a neoplasm or both. Many have viewed cystic nephroma as the benign end of the pathologic spectrum with cystic partially differentiated nephroblastoma and Wilms tumor, whereas others have considered it a mixed epithelial and stromal tumor. We hypothesize that cystic nephroma, like the pleuropulmonary blastoma in the lung, represents a spectrum of abnormal renal organogenesis with risk for malignant transformation. Here we studied DICER1 mutations in a cohort of 20 cystic nephromas and 6 cystic partially differentiated nephroblastomas, selected independently of a familial association with pleuropulmonary blastoma and describe four cases of sarcoma arising in cystic nephroma, which have a similarity to the solid areas of type II or III pleuropulmonary blastoma. The genetic analyses presented here confirm that DICER1 mutations are the major genetic event in the development of cystic nephroma. Further, cystic nephroma and pleuropulmonary blastoma have similar DICER1 loss of function and ‘hotspot' missense mutation rates, which involve specific amino acids in the RNase IIIb domain. We propose an alternative pathway with the genetic pathogenesis of cystic nephroma and DICER1-renal sarcoma paralleling that of type I to type II/III malignant progression of pleuropulmonary blastoma
Recommended from our members
Lineage of origin in rhabdomyosarcoma informs pharmacological response
Lineage or cell of origin of cancers is often unknown and thus is not a consideration in therapeutic approaches. Alveolar rhabdomyosarcoma (aRMS) is an aggressive childhood cancer for which the cell of origin remains debated. We used conditional genetic mouse models of aRMS to activate the pathognomonic Pax3:Foxo1 fusion oncogene and inactivate p53 in several stages of prenatal and postnatal muscle development. We reveal that lineage of origin significantly influences tumor histomorphology and sensitivity to targeted therapeutics. Furthermore, we uncovered differential transcriptional regulation of the Pax3:Foxo1 locus by tumor lineage of origin, which led us to identify the histone deacetylase inhibitor entinostat as a pharmacological agent for the potential conversion of Pax3:Foxo1-positive aRMS to a state akin to fusion-negative RMS through direct transcriptional suppression of Pax3:Foxo1.Stem Cell and Regenerative Biolog
Congenital Myenteric Hypoganglionosis.
Congenital myenteric hypoganglionosis is a rare developmental disorder characterized clinically by severe and persistent neonatal intestinal pseudoobstruction. The diagnosis is established by the prevalence of small myenteric ganglia composed of closely spaced ganglion cells with sparse surrounding neuropil. In practice, the diagnosis entails familiarity with the normal appearance of myenteric ganglia in young infants and the ability to confidently recognize significant deviations in ganglion size and morphology. We review clinical, histologic, and immunohistochemical findings from 12 patients with congenital myenteric hypoganglionosis in comparison with similar data from age-matched controls and clearly delineate the diagnostic features of the condition. Practical guidelines are provided to assist surgical pathologists, who are likely to encounter this condition only infrequently. The diagnosis typically requires full-thickness intestinal biopsy as the abnormality is confined to the myenteric plexus in many patients. Immunohistochemistry for Hu C/D may be used to confirm hypoganglionosis. Reduced staining for calretinin and NeuN implicates a selective deficiency of intrinsic primary afferent neurons in this disease
Evasion mechanisms to Igf1r inhibition in rhabdomyosarcoma
Inhibition of the insulin-like growth factor 1 receptor (Igf1r) is an approach being taken in clinical trials to overcome the dismal outcome for metastatic alveolar rhabdomyosarcoma (ARMS), an aggressive muscle cancer of children and young adults. In our study, we address the potential mechanism(s) of Igf1r inhibitor resistance that might be anticipated for patients. Using a genetically engineered mouse model of ARMS, validated for active Igf1r signaling, we show that the prototypic Igf1r inhibitor NVP-AEW541 can inhibit cell growth and induce apoptosis in vitro in association with decreased Akt and Mapk phosphorylation. However, drug resistance in vivo is more common and is accompanied by Igf1r overexpression, Mapk reactivation, and Her2 overexpression. Her2 is found to form heterodimers with Igf1r in resistant primary tumor cell cultures, and stimulation with Igf2 leads to Her2 phosphorylation. The Her2 inhibitor lapatinib cooperates with NVP-AEW541 to reduce Igf1r phosphorylation and to inhibit cell growth even though lapatinib alone has little effect on growth. These results point to the potential therapeutic importance of simultaneous targeting of Igf1r and Her2 to abrogate resistance
Evasion Mechanisms to Igf1r Inhibition in Rhabdomyosarcoma
Inhibition of the insulin-like growth factor 1 receptor (Igf1r) is an approach being taken in clinical trials to overcome the dismal outcome for metastatic alveolar rhabdomyosarcoma (ARMS), an aggressive muscle cancer of children and young adults. In our study, we address the potential mechanism(s) of Igf1r inhibitor resistance that might be anticipated for patients. Using a genetically engineered mouse model of ARMS, validated for active Igf1r signaling, we show that the prototypic Igf1r inhibitor NVP-AEW541 can inhibit cell growth and induce apoptosis in vitro in association with decreased Akt and Mapk phosphorylation. However, drug resistance in vivo is more common and is accompanied by Igf1r overexpression, Mapk reactivation, and Her2 overexpression. Her2 is found to form heterodimers with Igf1r in resistant primary tumor cell cultures, and stimulation with Igf2 leads to Her2 phosphorylation. The Her2 inhibitor lapatinib cooperates with NVP-AEW541 to reduce Igf1r phosphorylation and to inhibit cell growth even though lapatinib alone has little effect on growth. These results point to the potential therapeutic importance of simultaneous targeting of Igf1r and Her2 to abrogate resistance