15,810 research outputs found

    The strengthening of reentrant pinning by collective interactions in the peak effect

    Full text link
    Since it was first observed about 40 years ago [1], the peak effect has been the subject of numerous research mainly impelled by the desire to determine its exact mechanisms. Despite these efforts, a consensus on this question has yet to be reached. Experimentally, the peak effect indicates a transition from a depinned vortex phase to a reentrant pinning phase at high magnetic field. To study the effects of intrinsic pinning on the peak effect, we consider Fex_{x}Ni1−x_{1-x}Zr2_{2} superconducting metallic glasses in which the vortex pinning force varies depending on the Fe content and in which a huge peak effect is seen as a function of magnetic field. The results are mapped out as a phase diagram in which it is readily seen that the peak effect becomes broader with decreasing pinning force. Typically, pinning can be understood by increased pinning centers, but here, we show that reentrant pinning is due to the strengthening of interactions (while decreasing pinning strength). Our results demonstrate the strengthening of the peak effect by collective effects.Comment: 4 pages, 4 figure

    Atomization of broad specification aircraft fuels

    Get PDF
    The atomization properties of liquid fuels for the potential use in aircraft gas turbine engines are discussed. The significance of these properties are addressed with respect to the ignition and subsequent combustion behavior of the fuel spray/air mixture. It is shown that the fuel properties which affect the atomization behavior (viscosity, surface tension, and density) are less favorable for the broad specification fuels as compared to with those for conventional fuels
    • …
    corecore