7 research outputs found

    Inadequate Lopinavir Concentrations With Modified 8-hourly Lopinavir/Ritonavir 4:1 Dosing During Rifampicin-based Tuberculosis Treatment in Children Living With HIV

    Get PDF
    Background: Lopinavir/ritonavir plasma concentrations are profoundly reduced when co-administered with rifampicin. Super-boosting of lopinavir/ritonavir is limited by nonavailability of single-entity ritonavir, while double-dosing of co-formulated lopinavir/ritonavir given twice-daily produces suboptimal lopinavir concentrations in young children. We evaluated whether increased daily dosing with modified 8-hourly lopinavir/ritonavir 4:1 would maintain therapeutic plasma concentrations of lopinavir in children living with HIV receiving rifampicin-based antituberculosis treatment. // Methods: Children with HIV/tuberculosis coinfection weighing 3.0 to 19.9kg, on rifampicin-based antituberculosis treatment were commenced or switched to 8-hourly liquid lopinavir/ritonavir 4:1 with increased daily dosing using weight-band dosing approach. A standard twice-daily dosing of lopinavir/ritonavir was resumed 2 weeks after completing antituberculosis treatment. Plasma sampling was conducted during and 4 weeks after completing antituberculosis treatment. // Results: Of 20 children enrolled; 15, 1–7 years old, had pharmacokinetics sampling available for analysis. Lopinavir concentrations (median [range]) on 8-hourly lopinavir/ritonavir co-administered with rifampicin (n = 15; area under the curve0–24 55.32mg/h/L [0.30–398.7mg/h/L]; Cmax 3.04mg/L [0.03–18.6mg/L]; C8hr 0.90mg/L [0.01–13.7mg/L]) were lower than on standard dosing without rifampicin (n = 12; area under the curve24 121.63mg/h/L [2.56–487.3mg/h/L]; Cmax 9.45mg/L [0.39–26.4mg/L]; C12hr 3.03mg/L [0.01–17.7mg/L]). During and after rifampicin cotreatment, only 7 of 15 (44.7%) and 8 of 12 (66.7%) children, respectively, achieved targeted pre-dose lopinavir concentrations ≥1mg/L. // Conclusions: Modified 8-hourly dosing of lopinavir/ritonavir failed to achieve adequate lopinavir concentrations with concurrent antituberculosis treatment. The subtherapeutic lopinavir exposures on standard dosing after antituberculosis treatment are of concern and requires further evaluation

    Accuracy of Xpert Ultra in Diagnosis of Pulmonary Tuberculosis among Children in Uganda: a Substudy from the SHINE Trial.

    Get PDF
    Childhood tuberculosis (TB) presents significant diagnostic challenges associated with paucibacillary disease and requires a more sensitive test. We evaluated the diagnostic accuracy of Xpert MTB/RIF Ultra (Ultra) compared to other microbiological tests using respiratory samples from Ugandan children in the SHINE trial. SHINE is a randomized trial evaluating shorter treatment in 1,204 children with minimal TB disease in Africa and India. Among 352 samples and one cervical lymph node fine needle aspirate, one sample was randomly selected per patient and tested with the Xpert MTB/RIF assay (Xpert) and with Lowenstein-Jensen medium (LJ) and liquid mycobacterial growth indicator tube (MGIT) cultures. We selected only uncontaminated stored sample pellets for Ultra testing. We estimated the sensitivity of Xpert and Ultra against culture and a composite microbiological reference standard (any positive result). Of 398 children, 353 (89%) had culture, Xpert, and Ultra results. The median age was 2.8 years (interquartile range [IQR], 1.3 to 5.3); 8.5% (30/353) were HIV infected, and 54.4% (192/353) were male. Of the 353, 31 (9%) were positive by LJ and/or MGIT culture, 36 (10%) by Ultra, and 16 (5%) by Xpert. Sensitivities (95% confidence intervals [CI]) were 58% (39 to 65% [18/31]) for Ultra and 45% (27 to 64% [14/31]) for Xpert against any culture-positive result, with false positives of <1% and 5.5% for Xpert and Ultra. Against a composite microbiological reference, sensitivities were 72% (58 to 84% [36/50]) for Ultra and 32% (20 to 47% [16/50]) for Xpert. However, there were 17 samples that were positive only with Ultra (majority trace). Among children screened for minimal TB in Uganda, Ultra has higher sensitivity than Xpert. This represents an important advance for a condition which has posed a diagnostic challenge for decades

    Pharmacokinetics of First-Line Drugs in Children With Tuberculosis, Using World Health Organization-Recommended Weight Band Doses and Formulations.

    Get PDF
    BACKGROUND: Dispersible pediatric fixed-dose combination (FDC) tablets delivering higher doses of first-line antituberculosis drugs in World Health Organization-recommended weight bands were introduced in 2015. We report the first pharmacokinetic data for these FDC tablets in Zambian and South African children in the treatment-shortening SHINE trial. METHODS: Children weighing 4.0-7.9, 8.0-11.9, 12.0-15.9, or 16.0-24.9 kg received 1, 2, 3, or 4 tablets daily, respectively (rifampicin/isoniazid/pyrazinamide [75/50/150 mg], with or without 100 mg ethambutol, or rifampicin/isoniazid [75/50 mg]). Children 25.0-36.9 kg received doses recommended for adults <37 kg (300, 150, 800, and 550 mg/d, respectively, for rifampicin, isoniazid, pyrazinamide, and ethambutol). Pharmacokinetics were evaluated after at least 2 weeks of treatment. RESULTS: In the 77 children evaluated, the median age (interquartile range) was 3.7 (1.4-6.6) years; 40 (52%) were male and 20 (26%) were human immunodeficiency virus positive. The median area under the concentration-time curve from 0 to 24 hours for rifampicin, isoniazid, pyrazinamide, and ethambutol was 32.5 (interquartile range, 20.1-45.1), 16.7 (9.2-25.9), 317 (263-399), and 9.5 (7.5-11.5) mg⋅h/L, respectively, and lower in children than in adults for rifampicin in the 4.0-7.9-, 8-11.9-, and ≥25-kg weight bands, isoniazid in the 4.0-7.9-kg and ≥25-kg weight bands, and ethambutol in all 5 weight bands. Pyrazinamide exposures were similar to those in adults. CONCLUSIONS: Recommended weight band-based FDC doses result in lower drug exposures in children in lower weight bands and in those ≥25 kg (receiving adult doses). Further adjustments to current doses are needed to match current target exposures in adults. The use of ethambutol at the current World Health Organization-recommended doses requires further evaluation

    Safety and efficacy of whole-body chlorhexidine gluconate cleansing with or without emollient in hospitalised neonates (NeoCHG): a multicentre, randomised, open-label, factorial pilot trial

    Get PDF
    BACKGROUND: Healthcare-associated infections account for substantial neonatal in-hospital mortality. Chlorhexidine gluconate (CHG) whole body skin application could reduce sepsis by lowering bacterial colonisation density, although safety and optimal application regimen is unclear. Emollients, including sunflower oil, may independently improve skin condition, thereby reducing sepsis. We aimed to inform which concentration and frequency of CHG, with or without emollient, would best balance safety and the surrogate marker of efficacy of reduction in bacterial colonisation, to be taken forward in a future pragmatic trial evaluating clinical outcomes of sepsis and mortality. METHODS: In this multicentre, randomised, open-label, factorial pilot trial, neonates in two hospital sites (South Africa, Bangladesh) aged 1-6 days with gestational age ≥ 28 weeks and birthweight 1000-1999 g were randomly assigned in a factorial design stratified by site to three different concentrations of CHG (0.5%, 1%, and 2%), with or without emollient (sunflower oil) applied on working days vs alternate working days. A control arm received neither product. Caregivers were unblinded although laboratory staff were blinded to randomisation Co-primary outcomes were safety (change in neonatal skin condition score incorporating dryness, erythema, and skin breakdown) and efficacy in reducing bacterial colonisation density (change in total skin bacterial log10 CFU from randomisation to day-3 and day-8). The trial is registered at the ISRCTN registry, ISRCTN 69836999. FINDINGS: Between Apr 12 2021 and Jan 18 2022, 208 infants were randomised and 198 were included in the final analysis. Skin condition scores were low with mean 0.1 (sd = 0.3; N = 208) at baseline, 0.1 (sd = 0.3; N = 199) at day 3 and 0.1 (sd = 0.3; N = 189) at day 8, with no evidence of differences between concentration (1% CHG vs 0.5% estimate = -0.3, 95% CI = (-1.2, 0.6), p = 0.55. 2% CHG vs 0.5% CHG estimate = 0.5 (-0.4, 1.4), p = 0.30), increasing frequency (estimate = -0.4; 95% CI = (-1.1, 0.4), p = 0.33), emollient (estimate = -0.5, (-1.2, 0.3), p = 0.23) or with control (estimate = -0.9, (-2.3, 0.4), p = 0.18). Mean log10 CFU was 4.9 (sd = 3.0; N = 208) at baseline, 6.3 (sd = 3.1; N = 198) at day 3 and 8.4 (sd = 2.6; N = 183) with no evidence of differences between concentration (1% CHG vs 0.5% estimate = -0.4; 95% CI = (-1.1, 0.23); p = 0.23. 2% CHG vs 0.5% CHG estimate = 0.0 (-0.6, 0.6), p = 0.96), with increasing frequency (estimate = -0.4; 95% CI = (-0.9, 0.2); p = 0.17), with emollient (estimate = 0.4, 95% CI = (-0.2, 0.9); p = 0.18) or with control (estimate = -0.2, 95% CI = (-1.3, 0.9); p = 0.73). By day-8, overall 158/183 (86%) of neonates were colonised with Enterobacterales, and 72/183 (39%) and 69/183 (9%) with Klebsiella spp resistant to third-generation cephalosporin and carbapenems, respectively. There were no CHG-related SAEs, emollient-related SAEs, grade 3 or 4 skin scores or grade 3 or 4 hypothermias. INTERPRETATION: In this pilot trial of CHG with or without sunflower oil, no safety issues were identified, and further trials examining clinical outcomes are warranted. The relatively late start application of emollient, at a mean of 3.8 days of life, may have reduced the impact of the intervention although no subgroup effects were detected. There was no clear evidence in favour of a specific concentration of chlorhexidine, and there was rapid colonisation with Enterobacterales with frequent antimicrobial resistance, regardless of skin application regimen. FUNDING: The MRC Joint Applied Global Health award, the Global Antibiotic Research and Development Partnership (GARDP), MRC Clinical Trials Unit core funding (UKRI) and St. George's, University of London

    Ms. Apple is Missing!

    No full text
    Ms. Apple is Missing: The Case of the Chocolate Pudding Catastrophe! When your and the res of the students arrive to school, you find out that your teacher is missing! You, along with the rest of the students, need to try to figure out where Ms. Apple is. Make sure to make the right choices or your teacher will never be found!https://digitalcommons.snc.edu/snc_kids_books/1004/thumbnail.jp

    Shorter Treatment for Nonsevere Tuberculosis in African and Indian Children.

    Get PDF
    BACKGROUND Two thirds of children with tuberculosis have nonsevere disease, which may be treatable with a shorter regimen than the current 6-month regimen. METHODS We conducted an open-label, treatment-shortening, noninferiority trial involving children with nonsevere, symptomatic, presumably drug-susceptible, smear-negative tuberculosis in Uganda, Zambia, South Africa, and India. Children younger than 16 years of age were randomly assigned to 4 months (16 weeks) or 6 months (24 weeks) of standard first-line antituberculosis treatment with pediatric fixed-dose combinations as recommended by the World Health Organization. The primary efficacy outcome was unfavorable status (composite of treatment failure [extension, change, or restart of treatment or tuberculosis recurrence], loss to follow-up during treatment, or death) by 72 weeks, with the exclusion of participants who did not complete 4 months of treatment (modified intention-to-treat population). A noninferiority margin of 6 percentage points was used. The primary safety outcome was an adverse event of grade 3 or higher during treatment and up to 30 days after treatment. RESULTS From July 2016 through July 2018, a total of 1204 children underwent randomization (602 in each group). The median age of the participants was 3.5 years (range, 2 months to 15 years), 52% were male, 11% had human immunodeficiency virus infection, and 14% had bacteriologically confirmed tuberculosis. Retention by 72 weeks was 95%, and adherence to the assigned treatment was 94%. A total of 16 participants (3%) in the 4-month group had a primary-outcome event, as compared with 18 (3%) in the 6-month group (adjusted difference, -0.4 percentage points; 95% confidence interval, -2.2 to 1.5). The noninferiority of 4 months of treatment was consistent across the intention-to-treat, per-protocol, and key secondary analyses, including when the analysis was restricted to the 958 participants (80%) independently adjudicated to have tuberculosis at baseline. A total of 95 participants (8%) had an adverse event of grade 3 or higher, including 15 adverse drug reactions (11 hepatic events, all but 2 of which occurred within the first 8 weeks, when the treatments were the same in the two groups). CONCLUSIONS Four months of antituberculosis treatment was noninferior to 6 months of treatment in children with drug-susceptible, nonsevere, smear-negative tuberculosis. (Funded by the U.K. Medical Research Council and others; SHINE ISRCTN number, ISRCTN63579542.)
    corecore