98 research outputs found

    Comparison of Five Methods for the Determination of Rubella Immunity

    Get PDF
    Objective: The purpose of this study was to compare the accuracy of commonly used methods for the detection of rubella immunity, especially the fully automated IMx assay

    Electroporation-Induced Electrosensitization

    Get PDF
    BACKGROUND: Electroporation is a method of disrupting the integrity of cell membrane by electric pulses (EPs). Electrical modeling is widely employed to explain and study electroporation, but even most advanced models show limited predictive power. No studies have accounted for the biological consequences of electroporation as a factor that alters the cell's susceptibility to forthcoming EPs. METHODOLOGY/PRINCIPAL FINDINGS: We focused first on the role of EP rate for membrane permeabilization and lethal effects in mammalian cells. The rate was varied from 0.001 to 2,000 Hz while keeping other parameters constant (2 to 3,750 pulses of 60-ns to 9-µs duration, 1.8 to 13.3 kV/cm). The efficiency of all EP treatments was minimal at high rates and started to increase gradually when the rate decreased below a certain value. Although this value ranged widely (0.1-500 Hz), it always corresponded to the overall treatment duration near 10 s. We further found that longer exposures were more efficient irrespective of the EP rate, and that splitting a high-rate EP train in two fractions with 1-5 min delay enhanced the effects severalfold. CONCLUSIONS/SIGNIFICANCE: For varied experimental conditions, EPs triggered a delayed and gradual sensitization to EPs. When a portion of a multi-pulse exposure was delivered to already sensitized cells, the overall effect markedly increased. Because of the sensitization, the lethality in EP-treated cells could be increased from 0 to 90% simply by increasing the exposure duration, or the exposure dose could be reduced twofold without reducing the effect. Many applications of electroporation can benefit from accounting for sensitization, by organizing the exposure either to maximize sensitization (e.g., for sterilization) or, for other applications, to completely or partially avoid it. In particular, harmful side effects of electroporation-based therapies (electrochemotherapy, gene therapies, tumor ablation) include convulsions, pain, heart fibrillation, and thermal damage. Sensitization can potentially be employed to reduce these side effects while preserving or increasing therapeutic efficiency

    Incidental sounds of locomotion in animal cognition

    Get PDF
    The highly synchronized formations that characterize schooling in fish and the flight of certain bird groups have frequently been explained as reducing energy expenditure. I present an alternative, or complimentary, hypothesis that synchronization of group movements may improve hearing perception. Although incidental sounds produced as a by-product of locomotion (ISOL) will be an almost constant presence to most animals, the impact on perception and cognition has been little discussed. A consequence of ISOL may be masking of critical sound signals in the surroundings. Birds in flight may generate significant noise; some produce wing beats that are readily heard on the ground at some distance from the source. Synchronization of group movements might reduce auditory masking through periods of relative silence and facilitate auditory grouping processes. Respiratory locomotor coupling and intermittent flight may be other means of reducing masking and improving hearing perception. A distinct border between ISOL and communicative signals is difficult to delineate. ISOL seems to be used by schooling fish as an aid to staying in formation and avoiding collisions. Bird and bat flocks may use ISOL in an analogous way. ISOL and interaction with animal perception, cognition, and synchronized behavior provide an interesting area for future study

    Hsp60 chaperonopathies and chaperonotherapy: targets and agents.

    Get PDF

    Diagnosis of Clostridium difficile infection: comparison of four methods on specimens collected in Cary-Blair transport medium and tcdB PCR on fresh versus frozen samples

    No full text
    Clostridium difficile infection (CDI) caused by toxigenic strains of C. difficile is primarily a nosocomial infection with increasing prevalence. Stool specimens are typically collected in Cary-Blair transport medium to maximize culture-based detection of common stool pathogens. The goal of this study was to establish an analytically accurate and efficient algorithm for the detection of CDI in our patient population using samples collected in Cary-Blair transport medium. In addition, we wished to determine whether the sensitivity and specificity of PCR was affected by freezing samples before testing. Using 357 specimens, we compared four methods: enzyme immunoassay for the antigen glutamate dehydrogenase (Wampole™ C. DIFF CHEK-60 Assay, GDH), toxin A and B enzyme immunoassay (Remel ProSpecT™ C. difficile Toxin A/B Microplate Assay, Toxin EIA), cell culture cytotoxicity neutralization assay (Bartels™ Cytotoxicity Assay, CT), and real-time PCR targeting the toxin B gene (BD GeneOhm™ Cdiff Assay, PCR). The analytic sensitivity and specificity of each as determined using a combined gold standard were as follows: GDH, 100% and 93.2%; Toxin EIA, 82.9% and 82.9%; CT, 100% and 100%; PCR (performed on frozen specimens) 74.3% and 96.6%; respectively. However, the sensitivity and specificity of PCR improved to 100% when performed on 50 fresh stool samples collected in Cary-Blair. While CT remains a sensitive method for the detection of CDI, GDH offers an excellent initial screening method to rule out CDI. While the performance of each assay did not appear to be affected by collection in Cary-Blair medium, PCR performed better using fresh specimens
    corecore