180 research outputs found

    Architecture of AdaptFFN.

    No full text
    With the rapid development of ocean observation technology, underwater object detection has begun to occupy an essential position in the fields of aquaculture, environmental monitoring, marine science, etc. However, due to the problems unique to underwater images such as severe noise, blurred objects, and multi-scale, deep learning-based target detection algorithms lack sufficient capabilities to cope with these challenges. To address these issues, we improve DETR to make it well suited for underwater scenarios. First, a simple and effective learnable query recall mechanism is proposed to mitigate the effect of noise and can significantly improve the detection performance of the object. Second, for underwater small and irregular object detection, a lightweight adapter is designed to provide multi-scale features for the encoding and decoding stages. Third, the regression mechanism of the bounding box is optimized using the combination loss of smooth L1 and CIoU. Finally, we validate the designed network against other state-of-the-art methods on the RUOD dataset. The experimental results show that the proposed method is effective.</div

    Effectiveness of each component of our model.

    No full text
    With the rapid development of ocean observation technology, underwater object detection has begun to occupy an essential position in the fields of aquaculture, environmental monitoring, marine science, etc. However, due to the problems unique to underwater images such as severe noise, blurred objects, and multi-scale, deep learning-based target detection algorithms lack sufficient capabilities to cope with these challenges. To address these issues, we improve DETR to make it well suited for underwater scenarios. First, a simple and effective learnable query recall mechanism is proposed to mitigate the effect of noise and can significantly improve the detection performance of the object. Second, for underwater small and irregular object detection, a lightweight adapter is designed to provide multi-scale features for the encoding and decoding stages. Third, the regression mechanism of the bounding box is optimized using the combination loss of smooth L1 and CIoU. Finally, we validate the designed network against other state-of-the-art methods on the RUOD dataset. The experimental results show that the proposed method is effective.</div

    Results of different methods for underwater object detection.

    No full text
    Results of different methods for underwater object detection.</p

    Analysis of small-scale objects on the DUO dataset.

    No full text
    Analysis of small-scale objects on the DUO dataset.</p

    Different query decoding mechanisms.

    No full text
    (a) Basic, (b) Dense Query Recollection, (c) Learnable Query Recall.</p

    Comparison between models on RUOD.

    No full text
    With the rapid development of ocean observation technology, underwater object detection has begun to occupy an essential position in the fields of aquaculture, environmental monitoring, marine science, etc. However, due to the problems unique to underwater images such as severe noise, blurred objects, and multi-scale, deep learning-based target detection algorithms lack sufficient capabilities to cope with these challenges. To address these issues, we improve DETR to make it well suited for underwater scenarios. First, a simple and effective learnable query recall mechanism is proposed to mitigate the effect of noise and can significantly improve the detection performance of the object. Second, for underwater small and irregular object detection, a lightweight adapter is designed to provide multi-scale features for the encoding and decoding stages. Third, the regression mechanism of the bounding box is optimized using the combination loss of smooth L1 and CIoU. Finally, we validate the designed network against other state-of-the-art methods on the RUOD dataset. The experimental results show that the proposed method is effective.</div

    Architecture of network’s transformer.

    No full text
    With the rapid development of ocean observation technology, underwater object detection has begun to occupy an essential position in the fields of aquaculture, environmental monitoring, marine science, etc. However, due to the problems unique to underwater images such as severe noise, blurred objects, and multi-scale, deep learning-based target detection algorithms lack sufficient capabilities to cope with these challenges. To address these issues, we improve DETR to make it well suited for underwater scenarios. First, a simple and effective learnable query recall mechanism is proposed to mitigate the effect of noise and can significantly improve the detection performance of the object. Second, for underwater small and irregular object detection, a lightweight adapter is designed to provide multi-scale features for the encoding and decoding stages. Third, the regression mechanism of the bounding box is optimized using the combination loss of smooth L1 and CIoU. Finally, we validate the designed network against other state-of-the-art methods on the RUOD dataset. The experimental results show that the proposed method is effective.</div

    Effectiveness of the middle dimension.

    No full text
    With the rapid development of ocean observation technology, underwater object detection has begun to occupy an essential position in the fields of aquaculture, environmental monitoring, marine science, etc. However, due to the problems unique to underwater images such as severe noise, blurred objects, and multi-scale, deep learning-based target detection algorithms lack sufficient capabilities to cope with these challenges. To address these issues, we improve DETR to make it well suited for underwater scenarios. First, a simple and effective learnable query recall mechanism is proposed to mitigate the effect of noise and can significantly improve the detection performance of the object. Second, for underwater small and irregular object detection, a lightweight adapter is designed to provide multi-scale features for the encoding and decoding stages. Third, the regression mechanism of the bounding box is optimized using the combination loss of smooth L1 and CIoU. Finally, we validate the designed network against other state-of-the-art methods on the RUOD dataset. The experimental results show that the proposed method is effective.</div

    Coordinative Alignment To Achieve Ordered Guest Molecules in a Versatile Molecular Crystalline Sponge

    No full text
    A Mn<sup>2+</sup>-based metal–organic framework (coordination porous framework-5, CPF-5) can serve as a crystalline sponge for single crystal X-ray structural characterization of a variety of compounds using a combination of coordinative alignment and second coordination sphere interactions (e.g., hydrogen bonding). This technique requires only a conventional X-ray source to obtain high quality crystallographic data

    Widefield scanning imaging with optical super-resolution

    No full text
    <div><p>An economical, pollution-free microsphere-based widefield scanning imaging method is presented. This system is able to visualize the surface pattern of the sample through a transparent dielectric microsphere stuck onto a glass probe. The microsphere endows the system with super-resolution capability, while the field of view can easily be expanded by scanning and image stitching. The feasibilities and advantages of this method have been verified experimentally.</p></div
    • …
    corecore