133 research outputs found

    Chiral phase transitions: focus driven critical behavior in systems with planar and vector ordering

    Full text link
    The fixed point that governs the critical behavior of magnets described by the NN-vector chiral model under the physical values of NN (N=2,3N =2, 3) is shown to be a stable focus both in two and three dimensions. Robust evidence in favor of this conclusion is obtained within the five-loop and six-loop renormalization-group analysis in fixed dimension. The spiral-like approach of the chiral fixed point results in unusual crossover and near-critical regimes that may imitate varying critical exponents seen in physical and computer experiments.Comment: 4 pages, 5 figures. Discussion enlarge

    Critical thermodynamics of three-dimensional chiral model for N > 3

    Full text link
    The critical behavior of the three-dimensional NN-vector chiral model is studied for arbitrary NN. The known six-loop renormalization-group (RG) expansions are resummed using the Borel transformation combined with the conformal mapping and Pad\'e approximant techniques. Analyzing the fixed point location and the structure of RG flows, it is found that two marginal values of NN exist which separate domains of continuous chiral phase transitions N>Nc1N > N_{c1} and NN>Nc2N N > N_{c2} where such transitions are first-order. Our calculations yield Nc1=6.4(4)N_{c1} = 6.4(4) and Nc2=5.7(3)N_{c2} = 5.7(3). For N>Nc1N > N_{c1} the structure of RG flows is identical to that given by the Ï”\epsilon and 1/N expansions with the chiral fixed point being a stable node. For N<Nc2N < N_{c2} the chiral fixed point turns out to be a focus having no generic relation to the stable fixed point seen at small Ï”\epsilon and large NN. In this domain, containing the physical values N=2N = 2 and N=3N = 3, phase trajectories approach the fixed point in a spiral-like manner giving rise to unusual crossover regimes which may imitate varying (scattered) critical exponents seen in numerous physical and computer experiments.Comment: 12 pages, 3 figure

    Anterior pituitary cell networks

    Get PDF
    Both endocrine and non-endocrine cells of the pituitary gland are organized into structural and functional networks which are formed during embryonic development but which may be modified throughout life. Structural mapping of the various endocrine cell types has highlighted the existence of distinct network motifs and relationships with the vasculature which may relate to temporal differences in their output. Functional characterization of the network activity of growth hormone and prolactin cells has revealed a role for cell organization in gene regulation, the plasticity of pituitary hormone output and remarkably the ability to memorize altered demand. As such, the description of these endocrine cell networks alters the concept of the pituitary from a gland which simply responds to external regulation to that of an oscillator which may memorize information and constantly adapt its coordinated networks’ responses to the flow of hypothalamic inputs

    Metabolism regulates exposure of pancreatic islets to circulating molecules in vivo.

    Get PDF
    International audiencePancreatic ÎČ-cells modulate insulin secretion through rapid sensing of blood glucose and integration of gut-derived signals. Increased insulin demand during pregnancy and obesity alters islet function and mass and leads to gestational diabetes mellitus and type 2 diabetes in predisposed individuals. However, it is unclear how blood-borne factors dynamically access the islets of Langerhans. Thus, understanding the changes in circulating molecule distribution that accompany compensatory ÎČ-cell expansion may be key to developing novel antidiabetic therapies. Here, using two-photon microscopy in vivo in mice, we demonstrate that islets are almost instantly exposed to peaks of circulating molecules, which rapidly pervade the tissue before clearance. In addition, both gestation and short-term high-fat-diet feeding decrease molecule extravasation and uptake rates in vivo in islets, independently of ÎČ-cell expansion or islet blood flow velocity. Together, these data support a role for islet vascular permeability in shaping ÎČ-cell adaptive responses to metabolic demand by modulating the access and sensing of circulating molecules

    Partial loss of function of the GHRH Receptor leads to mild Growth Hormone Deficiency

    Get PDF
    OBJECTIVE: Recessive mutations in GHRHR are associated with severe isolated growth hormone deficiency (IGHD), with a final height in untreated patients of 130 cm ± 10 cm (-7.2 ± 1.6 SDS; males) and 114 ± 0.7 cm (-8.3 ± 0.1 SDS; females). DESIGN: We hypothesized that a consanguineous Pakistani family with IGHD in three siblings (two males, one female) would have mutations in GH1 or GHRHR. RESULTS: Two novel homozygous missense variants [c.11G>A (p.R4Q), c.236C>T (p.P79L)] at conserved residues were identified in all three siblings. Both were absent from control databases, aside from pR4Q appearing once in heterozygous form in the Exome Aggregation Consortium Browser. The brothers were diagnosed with GH deficiency at 9.8 and 6.0 years (height SDS: -2.24 and -1.23, respectively), with a peak GH of 2.9 Όg/liter with low IGF-1/IGF binding protein 3. Their sister presented at 16 years with classic GH deficiency (peak GH <0.1 Όg/liter, IGF-1 <3.3 mmol/liter) and attained an untreated near-adult height of 144 cm (-3.0 SDS); the tallest untreated patient with GHRHR mutations reported. An unrelated Pakistani female IGHD patient was also compound homozygous. All patients had a small anterior pituitary on magnetic resonance imaging. Functional analysis revealed a 50% reduction in maximal cAMP response to stimulation with GHRH by the p.R4Q/p.P79L double mutant receptor, with a 100-fold increase in EC50. CONCLUSION: We report the first coexistence of two novel compound homozygous GHRHR variants in two unrelated pedigrees associated with a partial loss of function. Surprisingly, the patients have a relatively mild IGHD phenotype. Analysis revealed that the pP79L mutation is associated with the compromise in function, with the residual partial activity explaining the mild phenotype

    Chiral critical behavior in two dimensions from five-loop renormalization-group expansions

    Full text link
    We analyse the critical behavior of two-dimensional N-vector spin systems with noncollinear order within the five-loop renormalization-group approximation. The structure of the RG flow is studied for different N leading to the conclusion that the chiral fixed point governing the critical behavior of physical systems with N = 2 and N = 3 does not coincide with that given by the 1/N expansion. We show that the stable chiral fixed point for N≀N∗N \le N^*, including N = 2 and N = 3, turns out to be a focus. We give a complete characterization of the critical behavior controlled by this fixed point, also evaluating the subleading crossover exponents. The spiral-like approach of the chiral fixed point is argued to give rise to unusual crossover and near-critical regimes that may imitate varying critical exponents seen in numerous physical and computer experiments.Comment: 17 pages, 12 figure

    A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model

    Get PDF
    The fully nonlinear and weakly dispersive Green-Naghdi model for shallow water waves of large amplitude is studied. The original model is first recast under a new formulation more suitable for numerical resolution. An hybrid finite volume and finite difference splitting approach is then proposed. The hyperbolic part of the equations is handled with a high-order finite volume scheme allowing for breaking waves and dry areas. The dispersive part is treated with a classical finite difference approach. Extensive numerical validations are then performed in one horizontal dimension, relying both on analytical solutions and experimental data. The results show that our approach gives a good account of all the processes of wave transformation in coastal areas: shoaling, wave breaking and run-up

    Exact multilocal renormalization on the effective action : application to the random sine Gordon model statics and non-equilibrium dynamics

    Full text link
    We extend the exact multilocal renormalization group (RG) method to study the flow of the effective action functional. This important physical quantity satisfies an exact RG equation which is then expanded in multilocal components. Integrating the nonlocal parts yields a closed exact RG equation for the local part, to a given order in the local part. The method is illustrated on the O(N) model by straightforwardly recovering the η\eta exponent and scaling functions. Then it is applied to study the glass phase of the Cardy-Ostlund, random phase sine Gordon model near the glass transition temperature. The static correlations and equilibrium dynamical exponent zz are recovered and several new results are obtained. The equilibrium two-point scaling functions are obtained. The nonequilibrium, finite momentum, two-time t,tâ€Čt,t' response and correlations are computed. They are shown to exhibit scaling forms, characterized by novel exponents λR≠λC\lambda_R \neq \lambda_C, as well as universal scaling functions that we compute. The fluctuation dissipation ratio is found to be non trivial and of the form X(qz(t−tâ€Č),t/tâ€Č)X(q^z (t-t'), t/t'). Analogies and differences with pure critical models are discussed.Comment: 33 pages, RevTe

    Shared socio-economic pathways extended for the Baltic Sea: exploring long-term environmental problems

    Get PDF
    Long-term scenario analyses can be powerful tools to explore plausible futures of human development under changing environmental, social, and economic conditions and to evaluate implications of different approaches to reduce pollution and resource overuse. Vulnerable ecosystems like the Baltic Sea in North-Eastern Europe tend to be under pressure from multiple, interacting anthropogenic drivers both related to the local scale (e.g. land use change) and the global scale (e.g. climate change). There is currently a lack of scenarios supporting policy-making that systematically explore how global and regional developments could concurrently impact the Baltic Sea region. Here, we present five narratives for future development in the Baltic Sea region, consistent with the global Shared Socioeconomic Pathways (SSPs) developed for climate research. We focus on agriculture, wastewater treatment, fisheries, shipping, and atmospheric deposition, which all represent major pressures on the Baltic Sea. While we find strong links between the global pathways and regional pressures, we also conclude that each pathway may very well be the host of different sectoral developments, which in turn may have different impacts on the ecosystem state. The extended SSP narratives for the Baltic Sea region are intended as a description of sectoral developments at regional scale that enable detailed scenario analysis and discussions across different sectors and disciplines, but within a common context. In addition, the extended SSPs can readily be combined with climate pathways for integrated scenario analysis of regional environmental problems.Peer reviewe

    The critical behavior of frustrated spin models with noncollinear order

    Full text link
    We study the critical behavior of frustrated spin models with noncollinear order, including stacked triangular antiferromagnets and helimagnets. For this purpose we compute the field-theoretic expansions at fixed dimension to six loops and determine their large-order behavior. For the physically relevant cases of two and three components, we show the existence of a new stable fixed point that corresponds to the conjectured chiral universality class. This contradicts previous three-loop field-theoretical results but is in agreement with experiments.Comment: 4 pages, RevTe
    • 

    corecore