8,050 research outputs found

    TransNets: Learning to Transform for Recommendation

    Full text link
    Recently, deep learning methods have been shown to improve the performance of recommender systems over traditional methods, especially when review text is available. For example, a recent model, DeepCoNN, uses neural nets to learn one latent representation for the text of all reviews written by a target user, and a second latent representation for the text of all reviews for a target item, and then combines these latent representations to obtain state-of-the-art performance on recommendation tasks. We show that (unsurprisingly) much of the predictive value of review text comes from reviews of the target user for the target item. We then introduce a way in which this information can be used in recommendation, even when the target user's review for the target item is not available. Our model, called TransNets, extends the DeepCoNN model by introducing an additional latent layer representing the target user-target item pair. We then regularize this layer, at training time, to be similar to another latent representation of the target user's review of the target item. We show that TransNets and extensions of it improve substantially over the previous state-of-the-art.Comment: Accepted for publication in the 11th ACM Conference on Recommender Systems (RecSys 2017

    MnasNet: Platform-Aware Neural Architecture Search for Mobile

    Full text link
    Designing convolutional neural networks (CNN) for mobile devices is challenging because mobile models need to be small and fast, yet still accurate. Although significant efforts have been dedicated to design and improve mobile CNNs on all dimensions, it is very difficult to manually balance these trade-offs when there are so many architectural possibilities to consider. In this paper, we propose an automated mobile neural architecture search (MNAS) approach, which explicitly incorporate model latency into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency. Unlike previous work, where latency is considered via another, often inaccurate proxy (e.g., FLOPS), our approach directly measures real-world inference latency by executing the model on mobile phones. To further strike the right balance between flexibility and search space size, we propose a novel factorized hierarchical search space that encourages layer diversity throughout the network. Experimental results show that our approach consistently outperforms state-of-the-art mobile CNN models across multiple vision tasks. On the ImageNet classification task, our MnasNet achieves 75.2% top-1 accuracy with 78ms latency on a Pixel phone, which is 1.8x faster than MobileNetV2 [29] with 0.5% higher accuracy and 2.3x faster than NASNet [36] with 1.2% higher accuracy. Our MnasNet also achieves better mAP quality than MobileNets for COCO object detection. Code is at https://github.com/tensorflow/tpu/tree/master/models/official/mnasnetComment: Published in CVPR 201
    • …
    corecore