20 research outputs found
OH spectral evolution of oxygen-rich late-type stars
We investigated the main-line spectral evolution with shell thickness of
oxygen rich AGB stars. The study is based on a sample of 30 sources distributed
along the IRAS colour-colour diagram. The sources were chosen to trace the
Miras with thick shells and the whole range of OH/IR stars. The Miras exhibit a
1665 MHz emission strength comparable to that at 1667 MHz. Even though the
Miras of the study have quite thick shells, their spectral characteristics in
both main lines attest to a strong heterogeneity in their OH shell with, in
particular, the presence of significant turbulence and acceleration. The
expansion velocity has been found to be about the same at 1665 and 1667 MHz,
taking into account a possible velocity turbulence of 1-2km/s at the location
of the main-line maser emission. An increase in the intensity ratio 1667/1665
with shell thickness has been found. A plausible explanation for such a
phenomenon is that competitive gain in favour of the 1667 MHz line increases
when the shell is getting thicker. There is an evolution in the spectral
profile shape with the appearance of a substantial inter-peak signal when the
shell is getting thicker. Also, inter-peak components are found and can be as
strong as the external standard peaks when the shell is very thick. This trend
for an increase of the signal in between the two main peaks is thought to be
the result of an increase of the saturation with shell thickness. All sources
but two - a Mira and an OH/IR star from the lower part of the colour-colour
diagram - are weakly polarized. The strong polarization observed for those two
particular objects is thought to be the result of perturbations in their
shells.Comment: 19 pages, 12 figures, accepted for publication in A&
Observations of the 6 Centimeter Lines of OH in Evolved (OH/IR) Stars
Recent observational and theoretical advances have called into question
traditional OH maser pumping models in evolved (OH/IR) stars. The detection of
excited-state OH lines would provide additional constraints to discriminate
amongst these theoretical models. In this Letter, we report on VLA observations
of the 4750 MHz and 4765 MHz lines of OH toward 45 sources, mostly evolved
stars. We detect 4765 MHz emission in the star forming regions Mon R2 and LDN
1084, but we do not detect excited-state emission in any evolved stars. The
flux density and velocity of the 4765 MHz detection in Mon R2 suggests that a
new flaring event has begun.Comment: 4 pages, to appear in ApJ
The evolutionary status of the semiregular variable QYSge
Repeated spectroscopic observations made with the 6m telescope of yielded new
data on the radial-velocity variability of the anomalous yellow supergiant
QYSge. The strongest and most peculiar feature in its spectrum is the complex
profile of NaI D lines, which contains a narrow and a very wide emission
components. The wide emission component can be seen to extend from -170 to +120
km/s, and at its central part it is cut by an absorption feature, which, in
turn, is split into two subcomponents by a narrow (16km/s at r=2.5) emission
peak. An analysis of all the Vr values leads us to adopt for the star a
systemic velocity of Vr=-21.1 km/s, which corresponds to the position of the
narrow emission component of NaI. The locations of emission-line features of
NaI D lines are invariable, which point to their formation in regions that are
external to the supergiant's photosphere. Differential line shifts of about
10km/s are revealed. The absorption lines in the spectrum of QYSge have a
substantial width of FWHM~45 km/s. The method of model atmospheres is used to
determine the following parameters: Teff=6250K, lg g=2.0, and microturbulence
Vt=4.5km/s. The metallicity of the star is found to be somewhat higher than the
solar one with an average overabundance of iron-peak elements of [Met/H]=+0.20.
The star is found to be slightly overabundant in carbon and nitrogen,
[C/Fe]=+0.25, [N/Fe]=+0.27. The alpha-process elements Mg, Si, and Ca are
slightly overabundant [alpha/H]=+0.12. The strong sodium excess, [Na/Fe]=+0.75,
is likely to be due to the dredge-up of the matter processed in the NeNa cycle.
Heavy elements of the s-process are underabundant relative to the Sun. On the
whole, the observed properties of QYSge do not give grounds for including this
star into the group of RCrB or RVTau-type type objects.Comment: 29 pages, 8 figures, 4 tables; accepted by Astrophys. Bulleti
Search for radiative pumping lines of OH masers: I. The 34.6um absorption line towards 1612 MHz OH maser sources
The 1612 MHz hydroxyl maser in circumstellar envelopes has long been thought
to be pumped by 34.6um photons. Only recently, the Infrared Space Observatory
has made possible spectroscopic observations which enable the direct
confirmation of this pumping mechanism in a few cases. To look for the presence
of this pumping line, we have searched the Infrared Space Observatory Data
Archive and found 178 spectra with data around 34.6um for 87 galactic 1612MHz
masers. The analysis performed showed that the noise level and the spectral
resolution of the spectra are the most important factors affecting the
detection of the 34.6um absorption line. Only 5 objects from the sample (3 red
supergiants and 2 galactic center sources) are found to show clear 34.6um
absorption (all of them already known) while two additional objects only
tentatively show this line. The 3 supergiants show similar pump rates and their
masers might be purely radiatively pumped. The pump rates of OH masers in late
type stars are found to be about 0.05, only 1/5 of the theoretical value of
0.25 derived by Elitzur (1992). We have also found 16 maser sources which,
according to the analysis assuming Elitzur's pump rate, should show the 34.6
m absorption line but do not. These non-detections can be tentatively
explained by far-infrared photon pumping, clumpy nature of the OH masing region
or a limb-filling emission effect in the OH shell.Comment: 11 pages, 8 figures, 3 table
Post-AGB stars with hot circumstellar dust: binarity of the low-amplitude pulsators
While the first binary post-AGB stars were serendipitously discovered, the
distinct characteristics of their Spectral Energy Distribution (SED) allowed us
to launch a more systematic search for binaries. We selected post-AGB objects
which show a broad dust excess often starting already at H or K, pointing to
the presence of a gravitationally bound dusty disc in the system. We started a
very extensive multi-wavelength study of those systems and here we report on
our radial velocity and photometric monitoring results for six stars of early F
type, which are pulsators of small amplitude. To determine the radial velocity
of low signal-to-noise time-series, we constructed dedicated auto-correlation
masks. The radial velocity variations were subjected to detailed analysis to
differentiate between pulsational variability and variability due to orbital
motion. Finally orbital minimalisation was performed to constrain the orbital
elements. All of the six objects are binaries, with orbital periods ranging
from 120 to 1800 days. Five systems have non-circular orbits. The mass
functions range from 0.004 to 0.57 solar mass and the companions are likely
unevolved objects of (very) low initial mass. We argue that these binaries must
have been subject to severe binary interaction when the primary was a cool
supergiant. Although the origin of the circumstellar disc is not well
understood, the disc is generally believed to be formed during this strong
interaction phase. The eccentric orbits of these highly evolved objects remain
poorly understood. With the measured orbits and mass functions we conclude that
the circumbinary discs seem to have a major impact on the evolution of a
significant fraction of binary systems.Comment: 13 pages, 15 figures, accepted for Astronomy and Astrophysic
OH spectral evolution of oxygen-rich late-type stars
International audienceWe investigated the main-line spectral evolution with shell thickness of oxygen rich AGB stars. The study is based on a sample of 30 sources distributed along the IRAS colour-colour diagram. The sources were chosen to trace the Miras with thick shells and the whole range of OH/IR stars. The Miras exhibit a 1665 MHz emission strength comparable to that at 1667 MHz. Even though the Miras of the study have quite thick shells, their spectral characteristics in both main lines attest to a strong heterogeneity in their OH shell with, in particular, the presence of significant turbulence and acceleration. The expansion velocity has been found to be about the same at 1665 and 1667 MHz, taking into account a possible velocity turbulence of 1-2 km s-1 at the location of the main-line maser emission. An increase in the intensity ratio 1667/1665 with shell thickness has been found. A plausible explanation for such a phenomenon is that competitive gain in favour of the 1667 MHz line increases when the shell is getting thicker. There is an evolution in the spectral profile shape with the appearance of a substantial inter-peak signal when the shell is getting thicker. Also, inter-peak components are found and can be as strong as the external standard peaks when the shell is very thick. This trend for an increase of the signal in between the two main peaks is thought to be the result of an increase of the saturation with shell thickness. All sources but two - a Mira and an OH/IR star from the lower part of the colour-colour diagram - are weakly polarized. The strong polarization observed for those two particular objects is thought to be the result of perturbations in their shells
Long-term OH variability of Miras
We present here the results and interpretation of a long-term OH variability
program conducted with the French Nançay Radiotelescope from 1980 to 1995. It
concerns seven Mira stars: R Aql, RS Vir, S CrB, R LMi, RR Aql, U Her and
UX Cyg. This study deals with the three OH maser lines observed in the
Miras at 1612, 1665 and 1667 MHz. These OH variable stars have
periods ranging from 290 to 580 days. The study presents the first insight of
the long-term temporal behaviour of OH integrated flux variations as well as
spectral component variations. The main aims are to determine the
temporal behaviour of the OH maser emission and the longevity and variability
of the spectral components.
We find that the shapes of the OH curve are closer to the IR than the
optical shapes and that the emissions at 1665 and 1667 MHz have a
very similar behaviour while the emission at 1612 MHz behaves differently.
The 1612 MHz emission shows smoother temporal variations and
greater component longevity than the main line emission, leading to the
conclusion that the 1612 MHz emission is coming from an outer part of the
circumstellar shell and is more saturated than the main line emission.
The study also shows the existence of inhomogeneities, especially differences
between the front and back parts of the shell can be seen, and that OH
variability curves undergo long term variations over several cycles
RÉGIONS IONISÉESÉMISSION RADIO DES RÉGIONS H II
Pas de Résumé disponibl
Detection of 1612 MHz OH emission in the semiregular variable stars RT Vir, R Crt and W Hya
We present evidence of 1612 MHz
emission in SR variable stars. The two SRb, RT Vir and R Crt, as well as
the SRa W Hya have been monitored with the upgraded Nançay radio
telescope since February 2001. All three objects have shown a weak
1612 MHz emission occuring in the velocity range of the strongest emission
observed in the main-lines. Such a detection is the second observational
evidence for emission in the 1612 MHz OH maser satellite line from SRb stars.
It also confirms the presence of 1612 MHz emission
in the SRa W Hya discovered by Etoka et al. (2001). Such a finding strongly
suggests that the shell properties of those three objects are quite
similar to those of the Mira stars with similar IR characteristics