12 research outputs found

    Fingerprint of Climate Change on Southern Ocean Carbon Storage

    Get PDF
    The Southern Ocean plays a critical role in the uptake, transport, and storage of carbon by the global oceans. It is the ocean's largest sink of CO2, yet it is also among the regions with the lowest storage of anthropogenic carbon. This behavior results from a unique combination of high winds driving the upwelling of deep waters and the subduction and northward transport of surface carbon. Here we isolate the direct effect of increasing anthropogenic CO2 in the atmosphere from the indirect effect of climate variability and climate change on the reorganization of carbon in the Southern Ocean interior using a combination of modeling and observations. We show that the effect of climate variability and climate change on the storage of carbon in the Southern Ocean is nearly as large as the effect of anthropogenic CO2 during the period 1998–2018 compared with the climatology around the year 1995. We identify a distinct climate fingerprint in dissolved inorganic carbon (DIC), with elevated DIC concentration in the ocean at 300–600 m that reinforces the anthropogenic CO2 signal, and reduced DIC concentration in the ocean around 2,000 m that offsets the anthropogenic CO2 signal. The fingerprint is strongest at lower latitudes (30°–55°S). This fingerprint could serve to monitor the highly uncertain evolution of carbon within this critical ocean basin, and better identify its drivers.publishedVersio

    Shelled pteropods in peril: Assessing vulnerability in a high CO2 ocean

    Get PDF
    The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making

    Global fossil carbon emissions rebound near pre-COVID-19 levels

    Full text link
    Fossil CO2 emissions in 2021 grew an estimated 4.2% (3.5%–4.8%) to 36.2 billion metric tons compared with 2020, pushing global emissions back close to 2019 levels (36.7 Gt CO2)

    The significance of the episodic nature of atmospheric deposition to Low Nutrient Low Chlorophyll regions

    Get PDF
    In the vast Low Nutrient Low-Chlorophyll (LNLC) Ocean, the vertical nutrient supply from the subsurface to the sunlit surface waters is low and atmospheric contribution of nutrients may be one order of magnitude greater over short timescales. The short turnover time of atmospheric Fe and N supply (<1?month for nitrate) further supports deposition being an important source of nutrients in LNLC regions. Yet, the extent to which atmospheric inputs are impacting biological activity and modifying the carbon balance in oligotrophic environments has not been constrained. Here, we quantify and compare the biogeochemical impacts of atmospheric deposition in LNLC regions using both a compilation of experimental data and model outputs. A metadata-analysis of recently conducted field and laboratory bioassay experiments reveals complex responses, and the overall impact is not a simple “fertilization effect” as observed in HNLC regions. Although phytoplankton growth may be enhanced, increases in bacterial activity and respiration result in weakening of biological carbon sequestration. The application of models using climatological or time-averaged non-synoptic deposition rates produced responses that were generally much lower than observed in the bioassay experiments. We demonstrate that experimental data and model outputs show better agreement on short timescale (days to weeks) when strong synoptic pulse of aerosols deposition, similar in magnitude to those observed in the field and introduced in bioassay experiments, is superimposed over the mean atmospheric deposition fields. These results suggest that atmospheric impacts in LNLC regions have been underestimated by models, at least at daily to weekly timescales, as they typically overlook large synoptic variations in atmospheric deposition and associated nutrient and particle inputs. Inclusion of the large synoptic variability of atmospheric input, and improved representation and parameterization of key processes that respond to atmospheric deposition, is required to better constrain impacts in ocean biogeochemical models. This is critical for understanding and prediction of current and future functioning of LNLC regions and their contribution to the global carbon cycle
    corecore