30 research outputs found
Ultrafast domain dilation induced by optical pumping in ferromagnetic CoFe/Ni multilayers
Ultrafast optical pumping of systems with spatially nonuniform magnetic
textures is known to cause far-from-equilibrium spin transport effects, such as
the broadening of domain-walls. Here, we study the dynamics of labyrinth domain
networks in ferromagnetic CoFe/Ni multilayers subject to a femtosecond optical
pump and find an ultrafast domain dilation by 6% within 1.6 ps. This surprising
result is based on the unambiguous determination of a harmonically-related
shift of ultrafast magnetic X-ray diffraction for the first- and third-order
rings. Domain dilation is plausible from conservation of momentum arguments,
whereby inelastic scattering from a hot, quasi-ballistic, radial current
transfers momentum to the magnetic domains. Our results suggest a potentially
rich variety of unexpected physical phenomena associated with
far-from-equilibrium inelastic electron-magnon scattering processes in the
presence of spin textures
Recommended from our members
Real-time spatial characterization of micrometer-sized X-ray free-electron laser beams focused by bendable mirrors
A real-time and accurate characterization of the X-ray beam size is essential to enable a large variety of different experiments at free-electron laser facilities. Typically, ablative imprints are employed to determine shape and size of μm-focused X-ray beams. The high accuracy of this state-of-the-art method comes at the expense of the time required to perform an ex-situ image analysis. In contrast, diffraction at a curved grating with suitably varying period and orientation forms a magnified image of the X-ray beam, which can be recorded by a 2D pixelated detector providing beam size and pointing jitter in real time. In this manuscript, we compare results obtained with both techniques, address their advantages and limitations, and demonstrate their excellent agreement. We present an extensive characterization of the FEL beam focused to ≈1 μm by two Kirkpatrick-Baez (KB) mirrors, along with optical metrology slope profiles demonstrating their exceptionally high quality. This work provides a systematic and comprehensive study of the accuracy provided by curved gratings in real-time imaging of X-ray beams at a free-electron laser facility. It is applied here to soft X-rays and can be extended to the hard X-ray range. Furthermore, curved gratings, in combination with a suitable detector, can provide spatial properties of μm-focused X-ray beams at MHz repetition rate
A French multicentric prospective prognostic cohort with epidemiological, clinical, biological and treatment information to improve knowledge on lymphoma patients: study protocol of the "REal world dAta in LYmphoma and survival in adults" (REALYSA) cohort.
BACKGROUND: Age-adjusted lymphoma incidence rates continue to rise in France since the early 80's, although rates have slowed since 2010 and vary across subtypes. Recent improvements in patient survival in major lymphoma subtypes at population level raise new questions about patient outcomes (i.e. quality of life, long-term sequelae). Epidemiological studies have investigated factors related to lymphoma risk, but few have addressed the extent to which socioeconomic status, social institutional context (i.e. healthcare system), social relationships, environmental context (exposures), individual behaviours (lifestyle) or genetic determinants influence lymphoma outcomes, especially in the general population. Moreover, the knowledge of the disease behaviour mainly obtained from clinical trials data is partly biased because of patient selection. METHODS: The REALYSA ("REal world dAta in LYmphoma and Survival in Adults") study is a real-life multicentric cohort set up in French areas covered by population-based cancer registries to study the prognostic value of epidemiological, clinical and biological factors with a prospective 9-year follow-up. We aim to include 6000 patients over 4 to 5 years. Adult patients without lymphoma history and newly diagnosed with one of the following 7 lymphoma subtypes (diffuse large B-cell, follicular, marginal zone, mantle cell, Burkitt, Hodgkin, mature T-cell) are invited to participate during a medical consultation with their hematologist. Exclusion criteria are: having already received anti-lymphoma treatment (except pre-phase) and having a documented HIV infection. Patients are treated according to the standard practice in their center. Clinical data, including treatment received, are extracted from patients' medical records. Patients' risk factors exposures and other epidemiological data are obtained at baseline by filling out a questionnaire during an interview led by a clinical research assistant. Biological samples are collected at baseline and during treatment. A virtual tumor biobank is constituted for baseline tumor samples. Follow-up data, both clinical and epidemiological, are collected every 6 months in the first 3 years and every year thereafter. DISCUSSION: This cohort constitutes an innovative platform for clinical, biological, epidemiological and socio-economic research projects and provides an opportunity to improve knowledge on factors associated to outcome of lymphoma patients in real life. TRIAL REGISTRATION: 2018-A01332-53, ClinicalTrials.gov identifier: NCT03869619
Electron population dynamics in resonant non-linear x-ray absorption in nickel at a free-electron laser
Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray–matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the L3-edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm2. We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale
Photon shot-noise limited transient absorption soft X-ray spectroscopy at the European XFEL
Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very
promising technique that can be employed at X-ray Free Electron Lasers (FELs)
to investigate out-of-equilibrium dynamics for material and energy research.
Here we present a dedicated setup for soft X-rays available at the Spectroscopy
& Coherent Scattering (SCS) instrument at the European X-ray Free Electron
Laser (EuXFEL). It consists of a beam-splitting off-axis zone plate (BOZ) used
in transmission to create three copies of the incoming beam, which are used to
measure the transmitted intensity through the excited and unexcited sample, as
well as to monitor the incoming intensity. Since these three intensity signals
are detected shot-by-shot and simultaneously, this setup allows normalized
shot-by-shot analysis of the transmission. For photon detection, the DSSC
imaging detector, which is capable of recording up to 800 images at 4.5 MHz
frame rate during the FEL burst, is employed and allows approaching the photon
shot-noise limit. We review the setup and its capabilities, as well as the
online and offline analysis tools provided to users.Comment: 11 figure
Symmetry-dependent ultrafast manipulation of nanoscale magnetic domains
Femtosecond optical pumping of magnetic materials has been used to achieve ultrafast switching and recently to nucleate symmetry-broken magnetic states. However, when the magnetic order parameter already presents a broken-symmetry state, such as a domain pattern, the dynamics are poorly understood and consensus remains elusive. Here, we resolve the controversies in the literature by studying the ultrafast response of magnetic domain patterns with varying degrees of translation symmetry with ultrafast x-ray resonant scattering. A data analysis technique is introduced to disentangle the isotropic and anisotropic components of the x-ray scattering. We find that the scattered intensity exhibits a radial shift restricted to the isotropic component, indicating that the far-from-equilibrium magnetization dynamics are intrinsically related to the spatial features of the domain pattern. Our results suggest alternative pathways for the spatiotemporal manipulation of magnetism via far-from-equilibrium dynamics and by carefully tuning the ground-state magnetic textures
Nonequilibrium sub–10 nm spin-wave soliton formation in FePt nanoparticles
Magnetic nanoparticles such as FePt in the L1 0 phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magnetocrystalline anisotropy. This, in turn, reduces the magnetic exchange length to just a few nanometers, enabling magnetic structures to be induced within the nanoparticles. Here, we describe the existence of spin-wave solitons, dynamic localized bound states of spin-wave excitations, in FePt nanoparticles. We show with time-resolved x-ray diffraction and micromagnetic modeling that spin-wave solitons of sub–10 nm sizes form out of the demagnetized state following femtosecond laser excitation. The measured soliton spin precession frequency of 0.1 THz positions this system as a platform to develop novel miniature devices