1 research outputs found
Freezing Transition in Decaying Burgers Turbulence and Random Matrix Dualities
We reveal a phase transition with decreasing viscosity at \nu=\nu_c>0
in one-dimensional decaying Burgers turbulence with a power-law correlated
random profile of Gaussian-distributed initial velocities
\sim|x-x'|^{-2}. The low-viscosity phase exhibits non-Gaussian
one-point probability density of velocities, continuously dependent on \nu,
reflecting a spontaneous one step replica symmetry breaking (RSB) in the
associated statistical mechanics problem. We obtain the low orders cumulants
analytically. Our results, which are checked numerically, are based on
combining insights in the mechanism of the freezing transition in random
logarithmic potentials with an extension of duality relations discovered
recently in Random Matrix Theory. They are essentially non mean-field in nature
as also demonstrated by the shock size distribution computed numerically and
different from the short range correlated Kida model, itself well described by
a mean field one step RSB ansatz. We also provide some insights for the finite
viscosity behaviour of velocities in the latter model.Comment: Published version, essentially restructured & misprints corrected. 6
pages, 5 figure