2 research outputs found

    Avalanches in mean-field models and the Barkhausen noise in spin-glasses

    Full text link
    We obtain a general formula for the distribution of sizes of "static avalanches", or shocks, in generic mean-field glasses with replica-symmetry-breaking saddle points. For the Sherrington-Kirkpatrick (SK) spin-glass it yields the density rho(S) of the sizes of magnetization jumps S along the equilibrium magnetization curve at zero temperature. Continuous replica-symmetry breaking allows for a power-law behavior rho(S) ~ 1/(S)^tau with exponent tau=1 for SK, related to the criticality (marginal stability) of the spin-glass phase. All scales of the ultrametric phase space are implicated in jump events. Similar results are obtained for the sizes S of static jumps of pinned elastic systems, or of shocks in Burgers turbulence in large dimension. In all cases with a one-step solution, rho(S) ~ S exp(-A S^2). A simple interpretation relating droplets to shocks, and a scaling theory for the equilibrium analog of Barkhausen noise in finite-dimensional spin glasses are discussed.Comment: 6 pages, 1 figur

    Cusps and shocks in the renormalized potential of glassy random manifolds: How Functional Renormalization Group and Replica Symmetry Breaking fit together

    Full text link
    We compute the Functional Renormalization Group (FRG) disorder- correlator function R(v) for d-dimensional elastic manifolds pinned by a random potential in the limit of infinite embedding space dimension N. It measures the equilibrium response of the manifold in a quadratic potential well as the center of the well is varied from 0 to v. We find two distinct scaling regimes: (i) a "single shock" regime, v^2 ~ 1/L^d where L^d is the system volume and (ii) a "thermodynamic" regime, v^2 ~ N. In regime (i) all the equivalent replica symmetry breaking (RSB) saddle points within the Gaussian variational approximation contribute, while in regime (ii) the effect of RSB enters only through a single anomaly. When the RSB is continuous (e.g., for short-range disorder, in dimension 2 <= d <= 4), we prove that regime (ii) yields the large-N FRG function obtained previously. In that case, the disorder correlator exhibits a cusp in both regimes, though with different amplitudes and of different physical origin. When the RSB solution is 1-step and non- marginal (e.g., d < 2 for SR disorder), the correlator R(v) in regime (ii) is considerably reduced, and exhibits no cusp. Solutions of the FRG flow corresponding to non-equilibrium states are discussed as well. In all cases the regime (i) exhibits a cusp non-analyticity at T=0, whose form and thermal rounding at finite T is obtained exactly and interpreted in terms of shocks. The results are compared with previous work, and consequences for manifolds at finite N, as well as extensions to spin glasses and related models are discussed.Comment: v2: Note added in proo
    corecore