1,102 research outputs found
A pathway to change
People and communities can be amazingly resourceful and innovative when adjusting to change, yet the challenges today are hugely complex. How can we work together to make the changes needed if we are to feed 9 billion people while taking care of the environment
Effect of Gravitational Lensing on Measurements of the Sunyaev-Zel'dovich Effect
The Sunyaev-Zel'dovich (SZ) effect of a cluster of galaxies is usually
measured after background radio sources are removed from the cluster field.
Gravitational lensing by the cluster potential leads to a systematic deficit in
the residual intensity of unresolved sources behind the cluster core relative
to a control field far from the cluster center. As a result, the measured
decrement in the Rayleigh-Jeans temperature of the cosmic microwave background
is overestimated. We calculate the associated systematic bias which is
inevitably introduced into measurements of the Hubble constant using the SZ
effect. For the cluster A2218, we find that observations at 15 GHz with a beam
radius of 0'.4 and a source removal threshold of 100 microJy underestimate the
Hubble constant by 6-10%. If the profile of the gas pressure declines more
steeply with radius than that of the dark matter density, then the ratio of
lensing to SZ decrements increases towards the outer part of the cluster.Comment: 11 pages, 3 figures, submitted to ApJ
Dwarf Galaxy Clustering and Missing Satellites
At redshifts around 0.1 the CFHT Legacy Survey Deep fields contain some
6x10^4 galaxies spanning the mass range from 10^5 to 10^12 Msun. We measure the
stellar mass dependence of the two point correlation using angular measurements
to largely bypass the errors, approximately 0.02 in the median, of the
photometric redshifts. Inverting the power-law fits with Limber's equation we
find that the auto-correlation length increases from a very low 0.4hMpc at
10^5.5 Msun to the conventional 4.5hMpc at 10^10.5 Msun. The power law fit to
the correlation function has a slope which increases from gamma approximately
1.6 at high mass to gamma approximately 2.3 at low mass. The spatial
cross-correlation of dwarf galaxies with more massive galaxies shows fairly
similar trends, with a steeper radial dependence at low mass than predicted in
numerical simulations of sub-halos within galaxy halos. To examine the issue of
missing satellites we combine the cross-correlation measurements with our
estimates of the low mass galaxy number density. We find on the average there
are 60+/-20 dwarfs in sub-halos with M(total) > 10^7 Msun for a typical Local
Group M(total)/M(stars)=30, corresponding to M/L_V approximately 100 for a
galaxy with no recent star formation. The number of dwarfs per galaxy is about
a factor of two larger than currently found for the Milky Way. Nevertheless,
the average dwarf counts are about a factor of 30 below LCDM simulation
results. The divergence from LCDM predictions is one of slope of the relation,
approximately dN/dlnM approximately -0.5 rather than the predicted -0.9, not
sudden onset at some characteristic scale. The dwarf galaxy star formation
rates span the range from passive to bursting, which suggests that there are
few completely dark halos.Comment: revised version submitted to Astrophysical Journa
Echec de la baisse de la TVA en restauration : mat ou pat ?
Cette étude de cas permet une approche chiffrée de l\u27impact supposée de la baisse de la TVA en restauration commerciale sur l\u27emploi, les investissements et la baisse des prix pour le client
Ultraviolet to infrared emission of z>1 galaxies: Can we derive reliable star formation rates and stellar masses?
We seek to derive star formation rates (SFR) and stellar masses (M_star) in
distant galaxies and to quantify the main uncertainties affecting their
measurement. We explore the impact of the assumptions made in their derivation
with standard calibrations or through a fitting process, as well as the impact
of the available data, focusing on the role of IR emission originating from
dust. We build a sample of galaxies with z>1, all observed from the UV to the
IR (rest frame). The data are fitted with the code CIGALE, which is also used
to build and analyse a catalogue of mock galaxies. Models with different SFHs
are introduced. We define different set of data, with or without a good
sampling of the UV range, NIR, and thermal IR data. The impact of these
different cases on the determination of M_star and SFR are analysed.
Exponentially decreasing models with a redshift formation of the stellar
population z ~8 cannot fit the data correctly. The other models fit the data
correctly at the price of unrealistically young ages when the age of the single
stellar population is taken to be a free parameter. The best fits are obtained
with two stellar populations. As long as one measurement of the dust emission
continuum is available, SFR are robustly estimated whatever the chosen model
is, including standard recipes. M_star measurement is more subject to
uncertainty, depending on the chosen model and the presence of NIR data, with
an impact on the SFR-M_star scatter plot. Conversely, when thermal IR data from
dust emission are missing, the uncertainty on SFR measurements largely exceeds
that of stellar mass. Among all physical properties investigated here, the
stellar ages are found to be the most difficult to constrain and this
uncertainty acts as a second parameter in SFR measurements and as the most
important parameter for M_star measurements.Comment: 14 pages, 14 figures, accepted for publication A&
Recommended from our members
A statistical model for sea surface diurnal warming driven by numercial weather predictions fluxes and winds
A statistical model is derived relating the diurnal variation of sea surface temperature (SST) to the net surface heat flux and surface wind speed from a numerical weather prediction (NWP) model. The model is derived using fluxes and winds from the European Centre for Medium-Range Weather Forecasting (ECMWF) NWP model and SSTs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). In the model, diurnal warming has a linear dependence on the net surface heat flux integrated since (approximately) dawn and an inverse quadratic dependence on the maximum of the surface wind speed in the same period. The model coefficients are found by matching, for a given integrated heat flux, the frequency distributions of the maximum wind speed and the observed warming. Diurnal cooling, where it occurs, is modelled as proportional to the integrated heat flux divided by the heat capacity of the seasonal mixed layer. The model reproduces the statistics (mean, standard deviation, and 95-percentile) of the diurnal variation of SST seen by SEVIRI and reproduces the geographical pattern of mean warming seen by the Advanced Microwave Scanning Radiometer (AMSR-E). We use the functional dependencies in the statistical model to test the behaviour of two physical model of diurnal warming that display contrasting systematic errors
EROs found behind lensing clusters: II.Empirical properties, classification, and SED modelling based on multi-wavelength observations
We study the properties and nature of extremely red galaxies (ERO, R-K>5.6)
found behind two lensing clusters and compare them with other known galaxy
populations. New HST/ACS observations, Spitzer IRAC and MIPS, and Chandra/ACIS
observations of the two lensing clusters Abell 1835 and AC114 contemplate our
earlier optical and near-IR observations and have been used to study extremely
red objects (EROs) in these deep fields. We have found 6 and 9 EROs in Abell
1835 and AC114. Several (7) of these objects are undetected up to the I and/or
z band, and are hence ``optical'' drop-out sources. The photometric redshifts
of most of our sources (80%) are z~0.7-1.5. According to simple colour-colour
diagrams the majority of our objects would be classified as hosting old stellar
populations. However, there are clear signs of dusty starbursts for several
among them. These objects correspond to the most extreme ones in R-K colour. We
estimate a surface density of (0.97+-0.31) arcmin-2 for EROs with (R-K>5.6) at
K<20.5. Among our 15 EROs 6 (40 %) also classify as distant red galaxies
(DRGs). 11 of 13 EROs with available IRAC photometry also fulfil the selection
criteria for IRAC selected EROs (IEROs) of Yan et al. (2004). SED modelling
shows that ~ 36 % of the IEROs in our sample are luminous or ultra-luminous
infrared galaxies ((U)LIRG). Some very red DRGs are found to be very dusty
starbursts, even (U)LIRGs, as also supported by their mid-IR photometry. No
indication for AGNs is found, although faint activity cannot be excluded for
all objects. From mid-IR and X-ray data 5 objects are clearly classified as
starbursts. The derived properties are quite similar to those of DRGs and
IEROs, except for 5 extreme objects in terms of colours, for which a very high
extinction (Av>3) is found.Comment: 20 pages, 10 figures, accepted for publication in A&
- âŠ