2,977 research outputs found
Experimental analysis of the Strato-rotational Instability in a cylindrical Couette flow
This study is devoted to the experimental analysis of the Strato-rotational
Instability (SRI). This instability affects the classical cylindrical Couette
flow when the fluid is stably stratified in the axial direction. In agreement
with recent theoretical and numerical analyses, we describe for the first time
in detail the destabilization of the stratified flow below the Rayleigh line
(i.e. the stability threshold without stratification). We confirm that the
unstable modes of the SRI are non axisymmetric, oscillatory, and take place as
soon as the azimuthal linear velocity decreases along the radial direction.
This new instability is relevant for accretion disks.Comment: 4 pages, 4 figures. PRL in press 200
Parametric instability and wave turbulence driven by tidal excitation of internal waves
We investigate the stability of stratified fluid layers undergoing
homogeneous and periodic tidal deformation. We first introduce a local model
which allows to study velocity and buoyancy fluctuations in a Lagrangian domain
periodically stretched and sheared by the tidal base flow. While keeping the
key physical ingredients only, such a model is efficient to simulate planetary
regimes where tidal amplitudes and dissipation are small. With this model, we
prove that tidal flows are able to drive parametric subharmonic resonances of
internal waves, in a way reminiscent of the elliptical instability in rotating
fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in
very good agreement with WKB analysis and Floquet theory. We also investigate
the turbulence driven by this instability mechanism. With spatio-temporal
analysis, we show that it is a weak internal wave turbulence occurring at small
Froude and buoyancy Reynolds numbers. When the gap between the excitation and
the Brunt-V\"ais\"al\"a frequencies is increased, the frequency spectrum of
this wave turbulence displays a -2 power law reminiscent of the high-frequency
branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been
measured in the oceans. In addition, we find that the mixing efficiency is
altered compared to what is computed in the context of DNS of stratified
turbulence excited at small Froude and large buoyancy Reynolds numbers and is
consistent with a superposition of waves.Comment: Accepted for publication in Journal of Fluid Mechanics, 27 pages, 21
figure
Tidal instability in a rotating and differentially heated ellipsoidal shell
The stability of a rotating flow in a triaxial ellipsoidal shell with an
imposed temperature difference between inner and outer boundaries is studied
numerically. We demonstrate that (i) a stable temperature field encourages the
tidal instability, (ii) the tidal instability can grow on a convective flow,
which confirms its relevance to geo- and astrophysical contexts and (iii) its
growth rate decreases when the intensity of convection increases. Simple
scaling laws characterizing the evolution of the heat flux based on a
competition between viscous and thermal boundary layers are derived
analytically and verified numerically. Our results confirm that thermal and
tidal effects have to be simultaneously taken into account when studying
geophysical and astrophysical flows
Spontaneous generation of inertial waves from boundary turbulence in a librating sphere
In this work, we report the excitation of inertial waves in a librating
sphere even for libration frequencies where these waves are not directly
forced. This spontaneous generation comes from the localized turbulence induced
by the centrifugal instabilities in the Ekman boundary layer near the equator
and does not depend on the libration frequency. We characterize the key
features of these inertial waves in analogy with previous studies of the
generation of internal waves in stratified flows from localized turbulent
patterns. In particular, the temporal spectrum exhibits preferred values of
excited frequency. This first-order phenomenon is generic to any rotating flow
in the presence of localized turbulence and is fully relevant for planetary
applications
Stratorotational instability in Taylor-Couette flow heated from above
We investigate the instability and nonlinear saturation of
temperature-stratified Taylor-Couette flows in a finite height cylindrical gap
and calculate angular-momentum transport in the nonlinear regime. The model is
based on an incompressible fluid in Boussinesq approximation with a positive
axial temperature gradient applied. While both ingredients itself, the
differential rotation as well as the stratification due to the temperature
gradient, are stable, together the system becomes subject of the
stratorotational instability and nonaxisymmetric flow pattern evolve. This flow
configuration transports angular momentum outwards and will therefor be
relevant for astrophysical applications. The belonging viscosity
coefficient is of the order of unity if the results are adapted to the size of
an accretion disc. The strength of the stratification, the fluids Prandtl
number and the boundary conditions applied in the simulations are well-suited
too for a laboratory experiment using water and a small temperature gradient
below five Kelvin. With such a rather easy realizable set-up the SRI and its
angular momentum transport could be measured in an experiment.Comment: 10 pages, 6 figures, revised version appeared in J. Fluid Mech.
(2009), vol. 623, pp. 375--38
The Universal Aspect Ratio of Vortices in Rotating Stratifi?ed Flows: Experiments and Observations
We validate a new law for the aspect ratio of vortices in a
rotating, stratified flow, where and are the vertical half-height and
horizontal length scale of the vortices. The aspect ratio depends not only on
the Coriolis parameter f and buoyancy (or Brunt-Vaisala) frequency of
the background flow, but also on the buoyancy frequency within the vortex
and on the Rossby number of the vortex such that . This law for is obeyed precisely by the
exact equilibrium solution of the inviscid Boussinesq equations that we show to
be a useful model of our laboratory vortices. The law is valid for both
cyclones and anticyclones. Our anticyclones are generated by injecting fluid
into a rotating tank filled with linearly-stratified salt water. The vortices
are far from the top and bottom boundaries of the tank, so there is no Ekman
circulation. In one set of experiments, the vortices viscously decay, but as
they do, they continue to obey our law for , which decreases over time.
In a second set of experiments, the vortices are sustained by a slow continuous
injection after they form, so they evolve more slowly and have larger |Ro|, but
they also obey our law for . The law for is not only validated
by our experiments, but is also shown to be consistent with observations of the
aspect ratios of Atlantic meddies and Jupiter's Great Red Spot and Oval BA. The
relationship for is derived and examined numerically in a companion
paper by Hassanzadeh et al. (2012).Comment: Submitted to the Journal of Fluid Mechanics. Also see the companion
paper by Hassanzadeh et al. "The Universal Aspect Ratio of Vortices in
Rotating Stratifi?ed Flows: Theory and Simulation" 201
Generating Functions For Kernels of Digraphs (Enumeration & Asymptotics for Nim Games)
In this article, we study directed graphs (digraphs) with a coloring
constraint due to Von Neumann and related to Nim-type games. This is equivalent
to the notion of kernels of digraphs, which appears in numerous fields of
research such as game theory, complexity theory, artificial intelligence
(default logic, argumentation in multi-agent systems), 0-1 laws in monadic
second order logic, combinatorics (perfect graphs)... Kernels of digraphs lead
to numerous difficult questions (in the sense of NP-completeness,
#P-completeness). However, we show here that it is possible to use a generating
function approach to get new informations: we use technique of symbolic and
analytic combinatorics (generating functions and their singularities) in order
to get exact and asymptotic results, e.g. for the existence of a kernel in a
circuit or in a unicircuit digraph. This is a first step toward a
generatingfunctionology treatment of kernels, while using, e.g., an approach "a
la Wright". Our method could be applied to more general "local coloring
constraints" in decomposable combinatorial structures.Comment: Presented (as a poster) to the conference Formal Power Series and
Algebraic Combinatorics (Vancouver, 2004), electronic proceeding
Image Watermaking With Biometric Data For Copyright Protection
In this paper, we deal with the proof of ownership or legitimate usage of a
digital content, such as an image, in order to tackle the illegitimate copy.
The proposed scheme based on the combination of the watermark-ing and
cancelable biometrics does not require a trusted third party, all the exchanges
are between the provider and the customer. The use of cancelable biometrics
permits to provide a privacy compliant proof of identity. We illustrate the
robustness of this method against intentional and unintentional attacks of the
watermarked content
Progress on testing Lorentz symmetry with MICROSCOPE
The Weak Equivalence Principle (WEP) and the local Lorentz invariance (LLI)
are two major assumptions of General Relativity (GR). The MICROSCOPE mission,
currently operating, will perform a test of the WEP with a precision of
. The data will also be analysed at SYRTE for the purposes of a LLI
test realised in collaboration with J. Tasson (Carleton College, Minnesota) and
Q. Bailey (Embry-Riddle Aeronautical University, Arizona). This study will be
performed in a general framework, called the Standard Model Extension (SME),
describing Lorentz violations that could appear at Planck scale (
GeV). The SME allows us to derive a Lorentz violating observable designed for
the MICROSCOPE experiment and to search for possible deviations from LLI in the
differential acceleration of the test masses
- …