304 research outputs found

    Conformational changes of polymers in model batter systems

    Get PDF
    Cake batters - made of flour, egg, sugar and fat - are complex systems. Ingredients interactions and their impact on protein secondary structure and starch conformational structures were studied in model batter systems using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The results showed the possibility of using the pregelatinized starch without affecting protein conformation. The estimation of protein secondary structure highlighted the prevalence of \u3b1-helical structures in the model batter system, while \u3b2-sheets are predominant in flour systems as known in dough systems. The protein conformation in batter system is related to fat-protein interactions and could explain fat functionality in the final product. Starch crystallinity increased when each ingredient - except for pregelatinized starches - was added to the flour. Changes in starch conformation could be related to the redistribution of water between the batter ingredients. The overall results highlighted the importance of ingredients on the structural conformation of the batter polymers - starch and proteins - which could be the key factor to understand the functional properties of the batter

    Combined Weekly Coordinate Solutions from SLR and DORIS

    Get PDF
    In International Terrestrial Reference Frame (ITRF) 2005 and ITRF2008, the approach for the construction of solutions by the IERS has been for individual analysis centers of each technique to process geodetic tracking data, and for each technique to develop a solution (or contribution) that is integrated into the final ITRF solution by careful combination of the technique solutions. The connections between the geodetic networks are realized by the application of local ties. In an alternate approach, we may assure processing homogeneity by creating normal equations for different techniques with the same orbit determination software, using identically derived algorithms. Another derivative of this approach is to realize the ties between the techniques using satellites tracked with multiple techniques; in effect tieing the networks together using satellite dynamics. In this solution, we develop a time series and a set of cumulative solutions from Satellite Laser Ranging (SLR) & Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS) based on homogeneous processing with the NASA GEODYN precise orbit determination suite of programs, where we jointly combine weekly the SLR data to Lageos1, Lageos2, Starlette, and Stella with the DORIS data from SPOT2-SPOT5, as well as satellites that utilize both techniques (TOPEX/Poseidon, Envisat, Jason-2). We discuss the modeling that is applied including upgrades implemented since the submission of the GSC ITRF2008 contributions for IDS. Firstly, we compare the SLR-only solutions comprising four geodetic satellites with the standard approach of utilizing only Lageos1 & Lageos2. Secondly, we evaluate the impact on the DORIS coordinates of the joint analysis with the SLR data

    Quantification of portal–bridging fibrosis area more accurately reflects fibrosis stage and liver stiffness than whole fibrosis or perisinusoidal fibrosis areas in chronic hepatitis C

    Get PDF
    International audienceMorphometry provides an objective evaluation of fibrosis in liver diseases. We developed an image analysis algorithm using automated thresholding and segmentation to separately quantify the areas and the fractal dimensions of portal–bridging fibrosis and perisinusoidal fibrosis in chronic hepatitis C liver biopsies. We studied 427 digitized liver biopsies and compared the automated measures of the different fibrosis compartments with (1) the Metavir F (fibrosis) and A (activity) histological scores, (2) the digitally assessed area of steatosis, and (3) the liver stiffness measured by elastography (Fibroscan). The perisinusoidal fibrosis area was higher than that of portal fibrosis in stages ≤F2; it reached its highest value in F2 stage and stabilized thereafter. The F3 stage was characterized by equal proportions of portal–bridging and perisinusoidal fibrosis, whereas portal–bridging area was predominant in cirrhosis. Measurement of portal–bridging fibrosis showed highly significantly different values between contiguous F stages; the ratio of portal–bridging fibrosis/perisinusoidal fibrosis displayed less overlap between Metavir stages than did the whole fibrosis area values. Fractal dimension showed that portal–bridging fibrosis tended to display a homogeneous surface-like spatial organization, whereas perisinusoidal fibrosis appeared more heterogeneous according to stage and curvilinear. The portal–bridging fibrosis area was low in cases with low Metavir activity and little steatosis, and became predominant with increasing activity and steatosis. Using stepwise multiple linear regression analysis, the liver stiffness was independently correlated to the portal–bridging fibrosis area (first step, P<0.001), the steatosis area (second step, P<0.001), and the Metavir A grade (third step, P=0.001), but not to the perisinusoidal fibrosis area. Automated quantification in a large cohort of chronic hepatitis C showed that perisinusoidal fibrosis progressively grew in early fibrosis stages but did not increase in septal or cirrhotic stages and that the portal–bridging fibrosis area appeared as a more accurate tool to assess fibrosis progression than the whole fibrosis area

    Third structure determination by powder diffractometry round robin (SDPDRR-3)

    Get PDF
    The results from a third structure determination by powder diffractometry (SDPD) round robin are discussed. From the 175 potential participants having downloaded the powder data, nine sent a total of 12 solutions (8 and 4 for samples 1 and 2, respectively, a tetrahydrated calcium tartrate and a lanthanum tungstate). Participants used seven different computer programs for structure solution (ESPOIR, EXPO, FOX, PSSP, SHELXS, SUPERFLIP, and TOPAS), applying Patterson, direct methods, direct space methods, and charge flipping approach. It is concluded that solving a structure from powder data remains a challenge, at least one order of magnitude more difficult than solving a problem with similar complexity from single-crystal data. Nevertheless, a few more steps in the direction of increasing the SDPD rate of success were accomplished since the two previous round robins: this time, not only the computer program developers were successful but also some users. No result was obtained from crystal structure prediction expert

    Practical diagnosis of cirrhosis in non-alcoholic fatty liver disease using currently available non-invasive fibrosis tests

    Get PDF
    Unlike for advanced liver fibrosis, the practical rules for the early non-invasive diagnosis of cirrhosis in NAFLD remain not well defined. Here, we report the derivation and validation of a stepwise diagnostic algorithm in 1568 patients with NAFLD and liver biopsy coming from four independent cohorts. The study algorithm, using first the elastography-based tests Agile3+ and Agile4 and then the specialized blood tests FibroMeterV3G and CirrhoMeterV3G, provides stratification in four groups, the last of which is enriched in cirrhosis (71% prevalence in the validation set). A risk prediction chart is also derived to allow estimation of the individual probability of cirrhosis. The predicted risk shows excellent calibration in the validation set, and mean difference with perfect prediction is only −2.9%. These tools improve the personalized non-invasive diagnosis of cirrhosis in NAFLD

    A Single Test Combining Blood Markers and Elastography is More Accurate Than Other Fibrosis Tests in the Main Causes of Chronic Liver Diseases

    Get PDF
    BACKGROUND AND GOAL: International guidelines suggest combining a blood test and liver stiffness measurement (LSM) to stage liver fibrosis in chronic hepatitis C (CHC) and non-alcoholic fatty liver disease (NAFLD). Therefore, we compared the accuracies of these tests between the main etiologies of chronic liver diseases. STUDY: Overall, 1968 patients were included in 5 etiologies: CHC: 698, chronic hepatitis B: 152, human immunodeficiency virus/CHC: 628, NAFLD: 225, and alcoholic liver disease (ALD): 265. Sixteen tests [13 blood tests, LSM (Fibroscan), 2 combined: FibroMeters] were evaluated. References were Metavir staging and CHC etiology. Accuracy was evaluated mainly with the Obuchowski index (OI) and accessorily with area under the receiver operating characteristics (F≥2, F≥3, cirrhosis). RESULTS: OIs in CHC were: FibroMeters: 0.812, FibroMeters: 0.785 to 0.797, Fibrotest: 0.762, CirrhoMeters: 0.756 to 0.771, LSM: 0.754, Hepascore: 0.752, FibroMeter: 0.750, aspartate aminotransferase platelet ratio index: 0.742, Fib-4: 0.741. In other etiologies, most tests had nonsignificant changes in OIs. In NAFLD, CHC-specific tests were more accurate than NAFLD-specific tests. The combined FibroMeters had significantly higher accuracy than their 2 constitutive tests (FibroMeters and LSM) in at least 1 diagnostic target in all etiologies, except in ALD where LSM had the highest OI, and in 3 diagnostic targets (OIs and 2 area under the receiver operating characteristics) in CHC and NAFLD. CONCLUSIONS: Some tests developed in CHC outperformed other tests in their specific etiologies. Tests combining blood markers and LSM outperformed single tests, validating recent guidelines and extending them to main etiologies. Noninvasive fibrosis evaluation can thus be simplified in the main etiologies by using a unique test: either LSM alone, especially in ALD, or preferably combined to blood markers

    Precise evaluation of liver histology by computerized morphometry shows that steatosis influences liver stiffness measured by transient elastography in chronic hepatitis C.

    Get PDF
    BACKGROUND: Liver stiffness evaluation (LSE) by Fibroscan is now widely used to assess liver fibrosis in chronic hepatitis C. Liver steatosis is a common lesion in chronic hepatitis C as in other chronic liver diseases, but its influence on LSE remains unclear. We aimed to precisely determine the influence of steatosis on LSE by using quantitative and precise morphometric measurements of liver histology. METHODS: 650 patients with chronic hepatitis C, liver biopsy, and LSE were included. Liver specimens were evaluated by optical analysis (Metavir F and A, steatosis grading) and by computerized morphometry to determine the area (%, reflecting quantity) and fractal dimension (FD, reflecting architecture) of liver fibrosis and steatosis. RESULTS: The relationships between LSE and liver histology were better described using morphometry. LSE median was independently linked to fibrosis (area or FD), steatosis (area or FD), activity (serum AST), and IQR/LSE median. Steatosis area ≥4.0 % induced a 50 % increase in LSE result in patients with fibrosis area &lt;9 %. In patients with IQR/LSE median ≤0.30, the rate of F0/1 patients misclassified as F ≥ 2 by Fibroscan was, respectively for steatosis area &lt;4.0 and ≥4.0 %: 12.6 vs 32.4 % (p = 0.003). Steatosis level did not influence LSE median when fibrosis area was ≥9 %, and consequently did not increase the rate of F ≤ 3 patients misclassified as cirrhotic. CONCLUSION: A precise evaluation of liver histology by computerized morphometry shows that liver stiffness measured by Fibroscan is linked to liver fibrosis, activity, and also steatosis. High level of steatosis induces misevaluation of liver fibrosis by Fibroscan
    • …
    corecore