22 research outputs found

    Lactoferrin disaggregates pneumococcal biofilms and inhibits acquisition of resistance through its DNase activity

    Get PDF
    Streptococcus pneumoniae colonizes the upper airways of children and the elderly. Colonization progresses to persistent carriage when S. pneumoniae forms biofilms, a feature required for the development of pneumococcal disease. Nasopharyngeal biofilms are structured with a matrix that includes extracellular DNA (eDNA), which is sourced from the same pneumococci and other bacteria. This eDNA also allows pneumococci to acquire new traits, including antibiotic resistance genes. In this study, we investigated the efficacy of lactoferrin (LF), at physiological concentrations found in secretions with bactericidal activity [i.e., colostrum (100 μM), tears (25 μM)], in eradicating pneumococcal biofilms from human respiratory cells. The efficacy of synthetic LF-derived peptides was also assessed. We first demonstrated that LF inhibited colonization of S. pneumoniae on human respiratory cells without affecting the viability of planktonic bacteria. LF-derived peptides were, however, bactericidal for planktonic pneumococci but they did not affect viability of pre-formed biofilms. In contrast, LF (40 and 80 μM) eradicated pneumococcal biofilms that had been pre-formed on abiotic surfaces (i.e., polystyrene) and on human pharyngeal cells, as investigated by viable counts and confocal microscopy. LF also eradicated biofilms formed by S. pneumoniae strains with resistance to multiple antibiotics. We investigated whether treatment with LF would affect the biofilm structure by analyzing eDNA. Surprisingly, in pneumococcal biofilms treated with LF, the eDNA was absent in comparison to the untreated control (∼10 μg/ml) or those treated with LF-derived peptides. EMSA assays showed that LF binds S. pneumoniae DNA and a time-course study of DNA decay demonstrated that the DNA is degraded when bound by LF. This LF-associated DNase activity inhibited acquisition of antibiotic resistance genes in both in vitro transformation assays and in a life-like bioreactor system. In conclusion, we demonstrated that LF eradicates pneumococcal-colonizing biofilms at a concentration safe for humans and identified a LF-associated DNAse activity that inhibited the acquisition of resistance

    Microbicidal effect of the lactoferrin peptides Lactoferricin17-30, Lactoferrampin265-284, and Lactoferrin chimera on the parasite Entamoeba histolytica

    No full text
    Entamoeba histolytica is a parasitic protozoan that produces amoebiasis, an intestinal disease characterized by ulcerative colitis and dysentery. In some cases, trophozoites can travel to the liver leading to hepatic abscesses and death. Recently, lactoferrin and lactoferricin B have been shown to be amoebicidal in axenic cultures. The aim of this work was to determine whether the lactoferrin-peptides lactoferricin amino acids 17-30, lactoferrampin amino acids 265-284, and lactoferrin chimera which is a fusion product of the two peptides, are capable of producing a microbicidal effect to trophozoites of E. histolytica. We evaluated the killing effect of these peptides in growth kinetics carried out in axenic culture medium to which different concentrations of peptides were added. At 50 μM of peptide concentration, lactoferricin and lactoferrampin had a moderate amoebicidal effect, since a 45-50% of trophozoites remained viable at 24 h culture. However, at 50 μM of the lactoferrin chimera 75% amoeba were killed whereas at 100 μM all cells died. These data indicate that of lactoferrin-peptides mainly the chimera have amoebicidal activity in a time- and concentration-dependent manner. The lactoferrin-peptides might be useful as therapeutic agents against amoebiasis and thereby diminish the use of metronidazole, which is extremely toxic for the host

    Possible involvement of orphan receptors GPR88 and GPR124 in the development of hypertension in spontaneously hypertensive rat

    No full text
    Hypertension (HBP) is a chronic disease characterized by increased blood pressure, which despite several treatments maintains a high morbi-mortality, which suggests that there are other mechanisms involved in this pathology, within which the orphan receptors could be candidates for the treatment of the HBP; these receptors are called orphan receptors because their ligand is unknown. These receptors have been suggested to participate in some pathologies because they are associated with various systems such as GPR88, which has been linked to the dopaminergic system, and GPR124 with angiogenesis, suggesting that these receptors could take part in HBP. Hence, the aim of this work was to study the expression of orphan receptors GPR88 and GPR124 in various tissues of normotensive and hypertensive rats. We used Wistar Kyoto (WKY) and spontaneously hypertensive rat (SHR) of 6–8 and 10–12 weeks of age and we determined systolic blood pressure (SBP), heart rate, as well as mRNA of GPR88 and GPR124 receptors by reverse transcription polymerase chain reaction (RT-PCR) in the aorta, heart, kidney, and brain. Our results showed that GPR88 and GPR124 were expressed in all analyzed tissues, but their expression is dependent on the age and development of HBP because their expression tends to be modified as HBP is established. Therefore, we conclude that GPR88 and GPR124 receptors may be involved in the development or maintenance of high blood pressure
    corecore