77,566 research outputs found

    Sticky Particles and Stochastic Flows

    Full text link
    Gaw\c{e}dzki and Horvai have studied a model for the motion of particles carried in a turbulent fluid and shown that in a limiting regime with low levels of viscosity and molecular diffusivity, pairs of particles exhibit the phenomena of stickiness when they meet. In this paper we characterise the motion of an arbitrary number of particles in a simplified version of their model

    Design Studies for a High Current Bunching System for CLIC Test Facility (CTF3) Drive Beam

    Get PDF
    A bunching system is proposed for the initial stage of CTF3 which consists of one (two) 3 GHz prebunchers and one 3 GHz travelling wave (TW) buncher with variable phase velocities. The electron beam is emitted from a 140 KV DC gun. Since the macropulse beam current (3.5 A) at the exit of the TW buncher is rather high, inside the TW buncher one has to take the beam loading effect into consideration. By using PARMELA, it is shown numerically that the bunching system can provide the bunches whose properties satisfy the design requirement of CTF3. The 0.8 m long TW buncher working at 2pi/3 mode has two phase velocities, 0.75 and 1. The dimensions of the caities in the two phase velocity regions are proposed considering the beam loading effect. The transient beam loading effect and the multibunch transverse instabilities are studied numerically, and it is concluded that higher order mode couplers should be installed in the TW buncher with the loaded quality factor of the dipole mode lower than 80.Comment: 5 figures, presented at the Linear Accelerator Conference 2000, August 2000, US

    Boundary control for a class of dissipative differential operators including diffusion systems

    Get PDF
    In this paper we study a class of partial differential equations (PDE's), which includes Sturm-Liouville systems and diffusion equations. From this class of PDE's we define systems with control and observation through the boundary of the spatial domain. That is, we describe how to select boundary conditions, such that the resulting system has inputs and outputs acting through the boundary. Furthermore, these boundary conditions are chosen in a way that the resulting system has a nonincreasing energy.\u

    Freezing Transition in Decaying Burgers Turbulence and Random Matrix Dualities

    Full text link
    We reveal a phase transition with decreasing viscosity ν\nu at \nu=\nu_c>0 in one-dimensional decaying Burgers turbulence with a power-law correlated random profile of Gaussian-distributed initial velocities \sim|x-x'|^{-2}. The low-viscosity phase exhibits non-Gaussian one-point probability density of velocities, continuously dependent on \nu, reflecting a spontaneous one step replica symmetry breaking (RSB) in the associated statistical mechanics problem. We obtain the low orders cumulants analytically. Our results, which are checked numerically, are based on combining insights in the mechanism of the freezing transition in random logarithmic potentials with an extension of duality relations discovered recently in Random Matrix Theory. They are essentially non mean-field in nature as also demonstrated by the shock size distribution computed numerically and different from the short range correlated Kida model, itself well described by a mean field one step RSB ansatz. We also provide some insights for the finite viscosity behaviour of velocities in the latter model.Comment: Published version, essentially restructured & misprints corrected. 6 pages, 5 figure

    Raman Scattering Study of the Lattice Dynamics of Superconducting LiFeAs

    Full text link
    We report an investigation of the lattice dynamical properties of LiFeAs using inelastic light scattering. Five out of the six expected phonon modes are observed. The temperature evolution of their frequencies and linewidths is in good agreement with an anharmonic-decay model. We find no evidence for substantial electron-phonon coupling, and no superconductivity-induced phonon anomalies.Comment: 5 pages, 3 figures, 1 tabl

    Superconductivity-induced Phonon Renormalization on NaFe1x_{1-x}Cox_{x}As

    Full text link
    We report a study of the lattice dynamics in superconducting NaFeAs (Tc = 8 K) and doped NaFe0.97Co0.03As (Tc = 20 K) using Raman light scattering. Five of the six phonon modes expected from group theory are observed. In contrast with results obtained on iso-structural and iso-electronic LiFeAs, anomalous broadening of Eg(As) and A1g(Na) modes upon cooling is observed in both samples. In addition, in the Co-doped sample, a superconductivity-induced renormalization of the frequency and linewidth of the B1g(Fe) vibration is observed. This renormalization can not be understood within a single band and simple multi-band approaches. A theoretical model that includes the effects of SDW correlations along with sign-changing s-wave pairing state and interband scattering has been developed to explain the observed behavior of the B1g(Fe) mode.Comment: 10 pages; 6 figure

    Spin Frustration and Orbital Order in Vanadium Spinels

    Full text link
    We present the results of our theoretical study on the effects of geometrical frustration and the interplay between spin and orbital degrees of freedom in vanadium spinel oxides AAV2_2O4_4 (AA = Zn, Mg or Cd). Introducing an effective spin-orbital-lattice coupled model in the strong correlation limit and performing Monte Carlo simulation for the model, we propose a reduced spin Hamiltonian in the orbital ordered phase to capture the stabilization mechanism of the antiferromagnetic order. Orbital order drastically reduces spin frustration by introducing spatial anisotropy in the spin exchange interactions, and the reduced spin model can be regarded as weakly-coupled one-dimensional antiferromagnetic chains. The critical exponent estimated by finite-size scaling analysis shows that the magnetic transition belongs to the three-dimensional Heisenberg universality class. Frustration remaining in the mean-field level is reduced by thermal fluctuations to stabilize a collinear ordering.Comment: 4 pages, 4 figures, proceedings submitted to SPQS200

    Expressive Stream Reasoning with Laser

    Full text link
    An increasing number of use cases require a timely extraction of non-trivial knowledge from semantically annotated data streams, especially on the Web and for the Internet of Things (IoT). Often, this extraction requires expressive reasoning, which is challenging to compute on large streams. We propose Laser, a new reasoner that supports a pragmatic, non-trivial fragment of the logic LARS which extends Answer Set Programming (ASP) for streams. At its core, Laser implements a novel evaluation procedure which annotates formulae to avoid the re-computation of duplicates at multiple time points. This procedure, combined with a judicious implementation of the LARS operators, is responsible for significantly better runtimes than the ones of other state-of-the-art systems like C-SPARQL and CQELS, or an implementation of LARS which runs on the ASP solver Clingo. This enables the application of expressive logic-based reasoning to large streams and opens the door to a wider range of stream reasoning use cases.Comment: 19 pages, 5 figures. Extended version of accepted paper at ISWC 201

    Shock statistics in higher-dimensional Burgers turbulence

    Full text link
    We conjecture the exact shock statistics in the inviscid decaying Burgers equation in D>1 dimensions, with a special class of correlated initial velocities, which reduce to Brownian for D=1. The prediction is based on a field-theory argument, and receives support from our numerical calculations. We find that, along any given direction, shocks sizes and locations are uncorrelated.Comment: 4 pages, 8 figure
    corecore