62 research outputs found

    Performance of Right-Turn Lane Designs at Intersections

    Get PDF
    Right-turn lane (RTL) crashes are among the most key contributors to intersection crashes in the US. Different right turn lanes based on their design, traffic volume, and location have varying levels of crash risk. Therefore, engineers and researchers have been looking for alternative ways to improve the safety and operations for right-turn traffic. This study investigates the traffic safety performance of the RTL in Indiana state based on multi-sources, including official crash reports, official database, and field study. To understand the RTL crashes\u27 influencing factors, we introduce a random effect negative binomial model and log-linear model to estimate the impact of influencing factors on the crash frequency and severity and adopt the robustness test to verify the reliability of estimations. In addition to the environmental factors, spatial and temporal factors, intersection, and RTL geometric factors, we propose build environment factors such as the RTL geometrics and intersection characteristics to address the endogeneity issues, which is rarely addressed in the accident-related research literature. Last, we develop a case study with the help of the Indiana Department of Transportation (INDOT). The empirical analyses indicate that RTL crash frequency and severity is mainly influenced by turn radius, traffic control, and other intersection related factors such as right-turn type and speed limit, channelized type, and AADT, acceleration lane and AADT. In particular, the effects of these factors are different among counties and right turn lane roadway types

    QoS-Aware Utility-Based Resource Allocation in Mixed-Traffic Multi-User OFDM Systems

    Get PDF
    This paper deals with the joint subcarrier and power allocation problem in a downlink multi-user orthogonal frequency division multiplexing system subject to user delay and minimum rate quality-of-service (QoS) requirements over a frequency-selective multi-carrier fading channel. We aim to maximize the utility-pricing function, formulated as the difference between the achieved spectral efficiency and the associated linear cost function of transmit power scaled by a system-dependent parameter. For a homogeneous system, we show that the joint resource allocation can be broken down into sequential problems while retaining the optimality. Specifically, the optimal solution is obtained by first assigning each subcarrier to the user with the best channel gain. Subsequently, the transmit power for each subcarrier is adapted according to water-filling policy if the global optimum is feasible, else it is given by a nonwater-filling power adaptation. For a heterogeneous system, an optimal solution needs exhaustive search and hence, we resort to two reduced-complexity sub-optimal algorithms. Algorithm-I is a simple extension of the aforementioned optimal algorithm developed for a homogeneous system, while Algorithm-II further takes into consideration the heterogeneity in user QoS requirements for performance enhancement. Simulation results reveal the impacts of user QoS requirements, number of subcarriers and number of users on the system transmit power

    Analytical model for large-scale design of sidewalk delivery robot systems

    Full text link
    With the rise in demand for local deliveries and e-commerce, robotic deliveries are being considered as efficient and sustainable solutions. However, the deployment of such systems can be highly complex due to numerous factors involving stochastic demand, stochastic charging and maintenance needs, complex routing, etc. We propose a model that uses continuous approximation methods for evaluating service trade-offs that consider the unique characteristics of large-scale sidewalk delivery robot systems used to serve online food deliveries. The model captures both the initial cost and the operation cost of the delivery system and evaluates the impact of constraints and operation strategies on the deployment. By minimizing the system cost, variables related to the system design can be determined. First, the minimization problem is formulated based on a homogeneous area, and the optimal system cost can be derived as a closed-form expression. By evaluating the expression, relationships between variables and the system cost can be directly obtained. We then apply the model in neighborhoods in New York City to evaluate the cost of deploying the sidewalk delivery robot system in a real-world scenario. The results shed light on the potential of deploying such a system in the future

    Multi-Agent Reinforcement Learning for Joint Channel Assignment and Power Allocation in Platoon-Based C-V2X Systems

    Full text link
    We consider the problem of joint channel assignment and power allocation in underlaid cellular vehicular-to-everything (C-V2X) systems where multiple vehicle-to-infrastructure (V2I) uplinks share the time-frequency resources with multiple vehicle-to-vehicle (V2V) platoons that enable groups of connected and autonomous vehicles to travel closely together. Due to the nature of fast channel variant in vehicular environment, traditional centralized optimization approach relying on global channel information might not be viable in C-V2X systems with large number of users. Utilizing a reinforcement learning (RL) approach, we propose a distributed resource allocation (RA) algorithm to overcome this challenge. Specifically, we model the RA problem as a multi-agent system. Based solely on the local channel information, each platoon leader, who acts as an agent, collectively interacts with each other and accordingly selects the optimal combination of sub-band and power level to transmit its signals. Toward this end, we utilize the double deep Q-learning algorithm to jointly train the agents under the objectives of simultaneously maximizing the V2I sum-rate and satisfying the packet delivery probability of each V2V link in a desired latency limitation. Simulation results show that our proposed RL-based algorithm achieves a close performance compared to that of the well-known exhaustive search algorithm.Comment: 6 pages, 4 figure
    • …
    corecore