174 research outputs found

    Hyperbolic Geometry in Computer Vision: A Survey

    Full text link
    Hyperbolic geometry, a Riemannian manifold endowed with constant sectional negative curvature, has been considered an alternative embedding space in many learning scenarios, \eg, natural language processing, graph learning, \etc, as a result of its intriguing property of encoding the data's hierarchical structure (like irregular graph or tree-likeness data). Recent studies prove that such data hierarchy also exists in the visual dataset, and investigate the successful practice of hyperbolic geometry in the computer vision (CV) regime, ranging from the classical image classification to advanced model adaptation learning. This paper presents the first and most up-to-date literature review of hyperbolic spaces for CV applications. To this end, we first introduce the background of hyperbolic geometry, followed by a comprehensive investigation of algorithms, with geometric prior of hyperbolic space, in the context of visual applications. We also conclude this manuscript and identify possible future directions.Comment: First survey paper for the hyperbolic geometry in CV application

    Experimental demonstration of RGB LED-based optical camera communications

    Get PDF
    Red, green, and blue (RGB) light-emitting diodes (LEDs) are widely used in everyday illumination, particularly where color-changing lighting is required. On the other hand, digital cameras with color filter arrays over image sensors have been also extensively integrated in smart devices. Therefore, optical camera communications (OCC) using RGB LEDs and color cameras is a promising candidate for cost-effective parallel visible light communications (VLC). In this paper, a single RGB LED-based OCC system utilizing a combination of undersampled phase-shift on off keying (UPSOOK), wavelength-division multiplexing (WDM), and multiple-input multiple-output (MIMO) techniques is designed, which offers higher space efficiency (3 bits/Hz/LED), long-distance, and nonflickering VLC data transmission. A proof-of-concept test bed is developed to assess the bit-error-rate performance of the proposed OCC system. The experimental results show that the proposed system using a single commercially available RGB LED and a standard 50-frame/s camera is able to achieve a data rate of 150 bits/s over a range of up to 60 m

    Non-line-of-sight 2 Ă— N indoor optical camera communications

    Get PDF
    We propose, for the first time to the best of our knowledge, a novel non-line-of-sight 2

    Non-line-of-sight 2 Ă— N indoor optical camera communications

    Get PDF
    We propose, for the first time to the best of our knowledge, a novel non-line-of-sight 2

    Experimental demonstration of enhanced violations of Leggett-Garg inequalities in a PT\mathcal{PT}-symmetric trapped-ion qubit

    Full text link
    The Leggett-Garg inequality (LGI) places a bound for the distinction between quantum systems and classical systems. Despite that the tests of temporal quantum correlations on LGIs have been studied in Hermitian realm, there are still unknowns for LGIs in non-Hermitian conditions due to the interplay between dissipation and coherence. For example, a theoretical hypothesis to be experimentally validated, suggests that within non-Hermitian systems, the non-unitary evolution of the system dynamics allows the boundaries of the LGIs to surpass the constraints imposed by traditional quantum mechanics. Here, we demonstrate the experimental violation of LGIs in a parity-time (PT\mathcal{PT})-symmetric trapped-ion qubit system by measuring the temporal correlation of the evolving states at different times. We find that the upper bounds of the three-time parameter K3K_3 and the four-time parameter K4K_4 show enhanced violations with the increasing dissipation, and can reach the upper limit by infinitely approaching exceptional point. We also observe the distinct behavior of the lower bounds for K3K_3 and K4K_4. While the lower bound for K3K_3 remains constant, the case for K4K_4 shows an upward trend with increasing dissipation. These results reveal a pronounced dependence of the system's temporal quantum correlations on its dissipation to the environment. This opens up a potential pathway for harnessing dissipation to modulate quantum correlations and entanglement

    Real-Time Observation of Molecular Spinning with Angular High-Harmonic Spectroscopy

    Get PDF
    We demonstrate an angular high-harmonic spectroscopy method to probe the spinning dynamics of a molecular rotation wave packet in real time. With the excitation of two time-delayed, polarization-skewed pump pulses, the molecular ensemble is impulsively kicked to rotate unidirectionally, which is subsequently irradiated by another delayed probe pulse for high-order harmonic generation (HHG). The spatiotemporal evolution of the molecular rotation wave packet is visualized from the time-dependent angular distributions of the HHG yields and frequency shift measured at various polarization directions and time delays of the probe pulse. The observed frequency shift in HHG is demonstrated to arise from the nonadiabatic effect induced by molecular spinning. Different from the previous spectroscopic and Coulomb explosion imaging techniques, the angular high-harmonic spectroscopy method can reveal additionally the electronic structure and multiple orbitals of the sampled molecule. All the experimental findings are well reproduced by numerical simulations. Further extension of this method would provide a powerful tool for probing complex polyatomic molecules with HHG spectroscopy

    Real-Time Observation of Molecular Spinning with Angular High-Harmonic Spectroscopy

    Get PDF
    We demonstrate an angular high-harmonic spectroscopy method to probe the spinning dynamics of a molecular rotation wave packet in real time. With the excitation of two time-delayed, polarization-skewed pump pulses, the molecular ensemble is impulsively kicked to rotate unidirectionally, which is subsequently irradiated by another delayed probe pulse for high-order harmonic generation (HHG). The spatiotemporal evolution of the molecular rotation wave packet is visualized from the time-dependent angular distributions of the HHG yields and frequency shift measured at various polarization directions and time delays of the probe pulse. The observed frequency shift in HHG is demonstrated to arise from the nonadiabatic effect induced by molecular spinning. Different from the previous spectroscopic and Coulomb explosion imaging techniques, the angular high-harmonic spectroscopy method can reveal additionally the electronic structure and multiple orbitals of the sampled molecule. All the experimental findings are well reproduced by numerical simulations. Further extension of this method would provide a powerful tool for probing complex polyatomic molecules with HHG spectroscopy
    • …
    corecore