7 research outputs found

    The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)

    Full text link
    Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20\%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors

    The Transition Zone between Healthy and Diseased Retina in Patients with Retinitis Pigmentosa

    No full text
    The optical coherence tomography changes in the transition zone from healthy retinal regions to severely affected regions in patients with retinitis pigmentosa go from a thinning of the outer segment layer to a loss of most of the outer nuclear layer. This may be a model for progression

    Cyclic bisphosphonate therapy reduces pain and improves physical functioning in children with osteogenesis imperfecta

    No full text
    Abstract Background Children with osteogenesis imperfecta (OI) experience pain and impaired physical functioning. The longitudinal effect of cyclic bisphosphonate treatment on these symptoms has not been described. We serially evaluated pain and functioning in pediatric patients with OI treated with intravenous bisphosphonate therapy. Methods Pain and physical functioning were assessed at multiple time-points over two infusion cycles in 22 OI patients (median age 10 years [range 2–21 years]; 8 girls) receiving cyclic intravenous bisphosphonate therapy. Pain was assessed using the FACES® visual analogue scale; physical functioning, including self-care, was assessed using the PedsQL™ Generic Core inventory. Results Pain scores decreased significantly immediately following infusion and remained reduced at 4 weeks post-infusion, increasing before and decreasing again after subsequent infusion (F = 25.00, p < 0.001). Physical functioning scaled scores improved 4 weeks after infusion and declined before subsequent infusion across patients (F = 10.87, p = 0.007). Exploratory analyses indicated significantly different effects between mild and moderate-severe OI types for pain, but not for physical functioning. No fractures occurred during the study. Conclusion In children with OI, cyclic intravenous bisphosphonate therapy transiently reduces pain and improves functional abilities. Pain relief occurs immediately following infusion with functional improvements observed 4 weeks later. Both pain and physical functioning return to pretreatment levels by the subsequent infusion

    Transition Zones between Healthy and Diseased Retina in Choroideremia (CHM) and Stargardt Disease (STGD) as Compared to Retinitis Pigmentosa (RP)

    No full text
    The transition zone between healthy and severely affected regions of the retina differ in structural abnormalities in patients with choroideremia, Stargardt disease, or retinitis pigmentosa

    Quantification of Peripapillary Sparing and Macular Involvement in Stargardt Disease (STGD1)

    No full text
    Relative structural and functional peripapillary sparing is present with more widespread STGD1 disease. Photoreceptor degeneration may precede RPE atrophy in STGD1 pathogenesis
    corecore