20 research outputs found

    Structural transformation and magnetoelectric behaviour in Bi1−xGdxFeO3 multiferroics

    Get PDF
    The crystal structure, dielectric, magnetic and magnetoelectric (ME) properties of Bi1−xGdxFeO3 (BGFO, x = 0, 0.05, 0.1, 0.15, 0.2) multiferroic ceramics have been studied. The substitution of bismuth by gadolinium induces a R3c → Pnma phase structural transition at x>0.1, which leads to the suppression of the spiral modulated spin structure and develops weak ferromagnetic properties in the BiFeO3-based materials. Through studying the temperature/magnetic field dependence of the ME coefficient, we have revealed the effect of the substitution of Gd3+ ions on the ME properties, and have demonstrated the possibility of manipulating the electric state in BGFO multiferroics by applying magnetic field at room temperature

    Magnetoelectric Coupling in Epitaxial Multiferroic BiFeO3-BaTiO3 Composite Thin Films

    No full text
    Herein, the magnetoelectric (ME) performance of epitaxial multilayer composite films built from nanometer‐thick layers of multiferroic BiFeO3 and ferroelectric BaTiO3 is reviewed. A successful implementation of shadow‐mask pulsed laser deposition considerably reduces the interface and surface roughness of the multilayers. In dependence of double‐layer thickness and the degree of structural perfection, the multilayers show high ME voltage coefficients up to 480 V cm−1 Oe−1 at 300 K and 0 T bias magnetic field. With decreasing double‐layer thickness, an interface‐driven effect critically enhances the ME coupling in this strain and charge–comediated system. Interestingly, the characteristics of temperature and DC magnetic field dependencies of magnetoelectric voltage coefficients change with the transition from the 2D to 3D character of the single layers, i.e., for BiFeO3 layers thicker than 5 nm within the multilayers. These changes are attributed to variations of the contributing ME coupling mechanisms. Furthermore, scanning transmission electron microscopy (STEM) with energy‐dispersive X‐ray (EDX) spectroscopy mapping‐based nanoanalysis indicates that chemical effects at the interfaces play an important role for the ME performance of the BiFeO3–BaTiO3 multilayer thin films

    Correlation of interface impurities and chemical gradients with high magnetoelectric coupling strength in multiferroic BiFeO3-BaTiO3 superlattices

    No full text
    The detailed understanding of magnetoelectric (ME) coupling in multiferroic oxide heterostructures is still a challenge. In particular, very little is known to date concerning the impact of the chemical interface structure and unwanted impurities that may be buried within short-period multiferroic BiFeO3-BaTiO3 superlattices during growth. Here, we demonstrate how trace impurities and elemental concentration gradients contribute to high ME voltage coefficients in thin-film superlattices, which are built from 15 double layers of BiFeO3-BaTiO3. Surprisingly, the highest ME voltage coefficient of 55 V cm-1 Oe-1 at 300 K was measured for a superlattice with a few atomic percent of Ba and Ti that diffused into the nominally 5 nm thin BiFeO3 layers, according to analytical transmission electron microscopy. In addition, highly sensitive enhancements of the cation signals were observed in depth profiles by secondary ion mass spectrometry at the interfaces of BaTiO3 and BiFeO3. As these interface features correlate with the ME performance of the samples, they point to the importance of charge effects at the interfaces, that is, to a possible charge mediation of ME coupling in oxide superlattices. The challenge is to provide cleaner materials and processes, as well as a well-defined control of the chemical interface structure, to push forward the application of oxide superlattices in multiferroic ME devices

    Impact of magnetization and hyperfine field distribution on high magnetoelectric coupling strength in BaTiO3-BiFeO3 multilayers

    No full text
    Correlations were established between the hyperfine field distribution around the Fe atoms, the multiferroic properties, and the high magnetoelectric coefficient in BaTiO3–BiFeO3 multilayer stacks with variable BiFeO3 single layer thickness, down to 5 nm. Of key importance in this study was the deposition of 57Fe – enriched BiFeO3, which enhances the sensitivity of conversion electron Mössbauer spectroscopy by orders of magnitude. The magnetoelectric coefficient αME reaches a maximum of 60.2 V cm−1 Oe−1 at 300 K and at a DC bias field of 2 Tesla for a sample of 15 × (10 nm BaTiO3–5 nm BiFeO3) and is one of the highest values reported so far. Interestingly, the highest αME is connected to a high asymmetry of the hyperfine field distribution of the multilayer composite samples. The possible mechanisms responsible for the strong magnetoelectric coupling are discussed

    Simple synthesis and characterization of vertically aligned Ba0.7Sr0.3TiO3 –CoFe2O4 multiferroic nanocomposites from CoFe2 nanopillar arrays

    No full text
    A new strategy to elaborate (1-3) type multiferroic nanocomposites with controlled dimensions and vertical alignment is presented. The process involves a supported nanoporous alumina layer as a template for growth of free-standing and vertically aligned CoFe2 nanopillars using a room temperature pulsed electrodeposition process. Ba0.70Sr0.30TiO3–CoFe2O4 multiferroic nanocomposites were grown through direct deposition of Ba0.7Sr0.3TiO3 films by radio-frequency sputtering on the top surface of the pillar structure, with in situ simultaneous oxidation of CoFe2 nanopillars. The vertically aligned multiferroic nanocomposites were characterized using various techniques for their structural and physical properties. The large interfacial area between the ferrimagnetic and ferroelectric phases leads to a magnetoelectric voltage coefficient as large as ~320 mV cm−1 Oe−1 at room temperature, reaching the highest values reported so far for vertically architectured nanocomposite systems. This simple method has great potential for large-scale synthesis of many other hybrid vertically aligned multiferroic heterostructures
    corecore