2 research outputs found

    Computationally-efficient Motion Cueing Algorithm via Model Predictive Control

    No full text
    Driving simulators have been used in the automotive industry for many years because of their ability to perform tests in a safe, reproducible and controlled immersive virtual environment. The improved performance of the simulator and its ability to recreate in-vehicle experience for the user is established through motion cueing algorithms (MCA). Such algorithms have constantly been developed with model predictive control (MPC) acting as the main control technique. Currently, available MPC-based methods either compute the optimal controller online or derive an explicit control law offline. These approaches limit the applicability of the MCA for real-time applications due to online computational costs and/or offline memory storage issues. This research presents a solution to deal with issues of offline and online solving through a hybrid approach. For this, an explicit MPC is used to generate a look-up table to provide an initial guess as a warm-start for the implicit MPC-based MCA. From the simulations, it is observed that the presented hybrid approach is able to reduce online computation load by shifting it offline using the explicit controller. Further, the algorithm demonstrates a good tracking performance with a significant reduction of computation time in a complex driving scenario using an emulator environment of a driving simulator.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Intelligent Vehicle

    Data-driven Steering Torque Behaviour Modelling with Hidden Markov Models

    No full text
    Modern Advanced Driver Assistance Systems (ADAS) are limited in their ability to consider the driver's intention, resulting in unnatural guidance and low customer acceptance. In this research, we focus on a novel data-driven approach to predict driver steering torque. In particular, driver behavior is modeled by learning the parameters of a Hidden Markov Model (HMM) and estimation is performed with Gaussian Mixture Regression (GMR). An extensive parameter selection framework enables us to objectively select the model hyper-parameters and prevents overfitting. The final model behavior is optimized with a cost function balancing between accuracy and smoothness. Naturalistic driving data covering seven participants is obtained using a static driving simulator at Toyota Motor Europe for the training, evaluation, and testing of the proposed model. The results demonstrate that our approach achieved a 92% steering torque accuracy with a 37% increase in signal smoothness and 90% fewer data compared to a baseline. In addition, our model captures the complex and nonlinear human behavior and inter-driver variability from novice to expert drivers, showing an interesting potential to become a steering performance predictor in future user-oriented ADAS.Intelligent Vehicle
    corecore