118 research outputs found

    Low energy n-\nuc{3}{H} scattering : a novel testground for nuclear interaction

    Full text link
    The low energy n-\nuc{3}{H} elastic cross sections near the resonance peak are calculated by solving the 4-nucleon problem with realistic NN interactions. Three different methods -- Alt, Grassberger and Shandas (AGS), Hyperspherical Harmonics and Faddeev-Yakubovsky -- have been used and their respective results are compared. We conclude on a failure of the existing NN forces to reproduce the n-\nuc{3}{H} total cross section.Comment: To be published in Phys. Rev.

    On the possibility of generating a 4-neutron resonance with a {\boldmath T=3/2T=3/2} isospin 3-neutron force

    Full text link
    We consider the theoretical possibility to generate a narrow resonance in the four neutron system as suggested by a recent experimental result. To that end, a phenomenological T=3/2T=3/2 three neutron force is introduced, in addition to a realistic NNNN interaction. We inquire what should be the strength of the 3n3n force in order to generate such a resonance. The reliability of the three-neutron force in the T=3/2T=3/2 channel is exmined, by analyzing its consistency with the low-lying T=1T=1 states of 4^4H, 4^4He and 4^4Li and the 3H+n^3{\rm H} + n scattering. The {\it ab initio} solution of the 4n4n Schr\"{o}dinger equation is obtained using the complex scaling method with boundary conditions appropiate to the four-body resonances. We find that in order to generate narrow 4n4n resonant states a remarkably attractive 3N3N force in the T=3/2T=3/2 channel is required.Comment: 11 pages, 11 figures, minor change, published version, to be published in Physical Review

    A new vibrational level of the H2+_2^+ molecular ion

    Get PDF
    A new state of the H2+_2^+ molecular ion with binding energy of 1.09×109\times10^{-9} a.u. below the first dissociation limit is predicted, using highly accurate numerical nonrelativistic quantum calculations. It is the first L=0 excited state, antisymmetric with respect to the exchange of the two protons. It manifests itself as a huge p-H scattering length of a=750±5a=750\pm 5 Bohr radii.Comment: 6 pages + 3 figure

    Low-energy neutrinos at off-axis from a standard beta-beam

    Get PDF
    We discuss a scenario to extract up to 150 MeV neutrinos at a standard beta-beam facility using one and two detectors off-axis. In particular we show that the high-energy component of the neutrino fluxes can be subtracted through a specific combination of the response of two off-axis detectors. A systematic analysis of the neutrino fluxes using different detector geometries is presented, as well as a comparison with the expected fluxes at a low-energy beta-beam facility. The presented option could offer an alternative way to perform low-energy neutrino experiments.Comment: 9 pages, 6 figure

    Benchmark calculation of p-3H and n-3He scattering

    Get PDF
    p-3H and n-3He scattering in the energy range above the n-3He but below the d-d thresholds is studied by solving the 4-nucleon problem with a realistic nucleon-nucleon interaction. Three different methods -- Alt, Grassberger and Sandhas, Hyperspherical Harmonics, and Faddeev-Yakubovsky -- have been employed and their results for both elastic and charge-exchange processes are compared. We observe a good agreement between the three different methods, thus the obtained results may serve as a benchmark. A comparison with the available experimental data is also reported and discussed.Comment: 13 pages, 6 figures. arXiv admin note: text overlap with arXiv:1109.362

    Benchmark calculation of n-3H and p-3He scattering

    Full text link
    The n-3H and p-3He elastic phase-shifts below the trinucleon disintegration thresholds are calculated by solving the 4-nucleon problem with three different realistic nucleon-nucleon interactions (the I-N3LO model by Entem and Machleidt, the Argonne v18 potential model, and a low-k model derived from the CD-Bonn potential). Three different methods -- Alt, Grassberger and Sandhas, Hyperspherical Harmonics, and Faddeev-Yakubovsky -- have been used and their respective results are compared. For both n-3H and p-3He we observe a rather good agreement between the three different theoretical methods. We also compare the theoretical predictions with the available experimental data, confirming the large underprediction of the p-3He analyzing power.Comment: 18 pages, 9 figure

    Low energy neutrino scattering measurements at future Spallation Source facilities

    Full text link
    In the future several Spallation Source facilities will be available worldwide. Spallation Sources produce large amount of neutrinos from decay-at-rest muons and thus can be well adapted to accommodate state-of-the-art neutrino experiments. In this paper low energy neutrino scattering experiments that can be performed at such facilities are reviewed. Estimation of expected event rates are given for several nuclei, electrons and protons at a detector located close to the source. A neutrino program at Spallation Sources comprises neutrino-nucleus cross section measurements relevant for neutrino and core-collapse supernova physics, electroweak tests and lepton-flavor violation searches.Comment: 12 pages, 4 figures, 5 table

    Relativistic and QED corrections to the 2pσu(υ=1)2p\sigma_{u}(\upsilon = 1) vibrational state of the H2+H^{+}_{2} molecular ion

    Full text link
    Relativistic and QED corrections to the recently discovered first vibrational 2pσu2p\sigma_u state are presented. This state has an extremely small nonrelativistic binding energy EB=1.085045252(1)×109E_B=1.085045252(1)\times10^{-9} a.u. Its wave functions has a maximum at R100R\approx100 a.u. and extends up to several hundreds. It is shown that this state does not disappear if higher order relativistic and QED corrections, including the Casimir--Polder effect, are taken into account

    A Conserved Vector Current test using low energy beta-beams

    Full text link
    We discuss the possibility of testing the weak currents and, in particular, the weak magnetism term through the measurement of the electron anti-neutrinos capture by protons at a low energy beta-beam facility. We analyze the sensitivity using both the total number of events and the angular distribution of the positrons emitted in a water Cerenkov detector. We show that the weak magnetism form factor might be determined with better than several percent accuracy using the angular distribution. This offers a new way of testing the Conserved Vector Current hypothesis.Comment: 8 pages, 5 figure

    What is the best or most relevant global minimum for nanoclusters? Predicting, comparing and recycling cluster structures with WASP@N

    Get PDF
    To address the question posed in the title, we have created, and now report details of, an open-access database of cluster structures with a web-assisted interface and toolkit as part of the WASP@N project. The database establishes a map of connectivities within each structure, the information about which is coded and kept as individual labels, called hashkeys, for the nanoclusters. These hashkeys are the basis for structure comparison within the database, and for establishing a map of connectivities between similar structures (topologies). The database is successfully used as a key element in a data-mining study of (MX)12 clusters of three binary compounds (LiI, SrO and GaAs) of which the database has no prior knowledge. The structures are assessed on the energy landscapes determined by the corresponding bulk interatomic potentials. Global optimisation, using a Lamarckian genetic algorithm, is used to search for low lying minima on the same energy landscape to confirm that the data-mined structures form a representative sample of the landscapes, with only very few structures missing from the close energy neighbourhood of the respective global minima
    corecore