2 research outputs found
Decomposition of semigroup algebras
Let A \subseteq B be cancellative abelian semigroups, and let R be an
integral domain. We show that the semigroup ring R[B] can be decomposed, as an
R[A]-module, into a direct sum of R[A]-submodules of the quotient ring of R[A].
In the case of a finite extension of positive affine semigroup rings we obtain
an algorithm computing the decomposition. When R[A] is a polynomial ring over a
field we explain how to compute many ring-theoretic properties of R[B] in terms
of this decomposition. In particular we obtain a fast algorithm to compute the
Castelnuovo-Mumford regularity of homogeneous semigroup rings. As an
application we confirm the Eisenbud-Goto conjecture in a range of new cases.
Our algorithms are implemented in the Macaulay2 package MonomialAlgebras.Comment: 12 pages, 2 figures, minor revisions. Package may be downloaded at
http://www.math.uni-sb.de/ag/schreyer/jb/Macaulay2/MonomialAlgebras/html
Triangulations and Severi varieties
We consider the problem of constructing triangulations of projective planes
over Hurwitz algebras with minimal numbers of vertices. We observe that the
numbers of faces of each dimension must be equal to the dimensions of certain
representations of the automorphism groups of the corresponding Severi
varieties. We construct a complex involving these representations, which should
be considered as a geometric version of the (putative) triangulations