40 research outputs found
Recommended from our members
On the validity of the centrality hypothesis in cross-sectional between-subject networks of psychopathology
Background
In the network approach to psychopathology, psychiatric disorders are considered networks of causally active symptoms (nodes), with node centrality hypothesized to reflect symptoms’ causal influence within a network. Accordingly, centrality measures have been used in numerous network-based cross-sectional studies to identify specific treatment targets, based on the assumption that deactivating highly central nodes would proliferate to other nodes in the network, thereby collapsing the network structure and alleviating the overall psychopathology (i.e., the centrality hypothesis).
Methods
Here, we summarize three types of evidence pertaining to the centrality hypothesis in psychopathology. First, we discuss the validity of the theoretical assumptions underlying the centrality hypothesis in psychopathology. We then summarize the methodological aspects of extant studies using centrality measures as predictors of symptom change following treatment, while delineating their main findings and several of their limitations. Finally, using a specific dataset of 710 treatment-seeking patients with posttraumatic stress disorder (PTSD) as an example, we empirically examine node centrality as a predictor of therapeutic change, replicating the approach taken by previous studies, while addressing some of their limitations. Specifically, we investigated whether three pre-treatment centrality indices (strength, predictability, and expected influence) were significantly correlated with the strength of the association between a symptom’s change and the change in the severity of all other symptoms in the network from pre- to post-treatment (Δnode-Δnetwork association). Using similar analyses, we also examine the predictive validity of two simple non-causal node properties (mean symptom severity and infrequency of symptom endorsement).
Results
Of the three centrality measures, only expected influence successfully predicted how strongly changes in nodes/symptoms were associated with change in the remainder of the nodes/symptoms. Importantly, when excluding the amnesia node, a well-documented outlier in the phenomenology of PTSD, none of the tested centrality measures predicted symptom change. Conversely, both mean symptom severity and infrequency of symptom endorsement, two standard non-network-derived indices, were found to be more predictive than expected influence and remained significantly predictive also after excluding amnesia from the network analyses.
Conclusions
The centrality hypothesis in its current form is ill-defined, showing no consistent supporting evidence in the context of cross-sectional, between-subject networks
Recommended from our members
Psychiatric symptoms and moral injury among US healthcare workers in the COVID-19 era
Background
Emerging cross-sectional data indicate that healthcare workers (HCWs) in the COVID-19 era face particular mental health risks. Moral injury – a betrayal of one’s values and beliefs, is a potential concern for HCWs who witness the devastating impact of acute COVID-19 illness while too often feeling helpless to respond. This study longitudinally examined rates of depression, generalized anxiety disorder (GAD), posttraumatic stress disorder (PTSD), and moral injury among United States HCWs in the COVID-19 era. We anticipated finding high levels of clinical symptoms and moral injury that would remain stable over time. We also expected to find positive correlations between clinical symptoms and moral injury.
Methods
This three-wave study assessed clinical symptoms and moral injury among 350 HCWs at baseline, 30, and 90 days between September and December 2020. Anxiety, depression, PTSD, and moral injury were measured using the Generalized Anxiety Disorder-7 (GAD-7), Patient Health Questionnaire-9 (PHQ-9), Primary Care PTSD Screen (PC-PTSD), and Moral Injury Events Scale (MIES).
Results
Of the 350 HCWs, 72% reported probable anxiety, depression, and/or PTSD disorders at baseline, 62% at day 30, and 64% at day 90. High level of moral injury was associated with a range of psychopathology including suicidal ideation, especially among healthcare workers self-reporting COVID-19 exposure.
Conclusions
Findings demonstrate broad, persisting, and diverse mental health consequences of the COVID-19 pandemic among United States HCWs. This study is the first to longitudinally examine the relationships between moral injury and psychopathology among HCWs, emphasizing the need to increase HCWs’ access to mental healthcare
Forms of Understanding of XAI-Explanations
Explainability has become an important topic in computer science and
artificial intelligence, leading to a subfield called Explainable Artificial
Intelligence (XAI). The goal of providing or seeking explanations is to achieve
(better) 'understanding' on the part of the explainee. However, what it means
to 'understand' is still not clearly defined, and the concept itself is rarely
the subject of scientific investigation. This conceptual article aims to
present a model of forms of understanding in the context of XAI and beyond.
From an interdisciplinary perspective bringing together computer science,
linguistics, sociology, and psychology, a definition of understanding and its
forms, assessment, and dynamics during the process of giving everyday
explanations are explored. Two types of understanding are considered as
possible outcomes of explanations, namely enabledness, 'knowing how' to do or
decide something, and comprehension, 'knowing that' -- both in different
degrees (from shallow to deep). Explanations regularly start with shallow
understanding in a specific domain and can lead to deep comprehension and
enabledness of the explanandum, which we see as a prerequisite for human users
to gain agency. In this process, the increase of comprehension and enabledness
are highly interdependent. Against the background of this systematization,
special challenges of understanding in XAI are discussed
Neuroimaging-Based Classification of PTSD Using Data-Driven Computational Approaches:A Multisite Big Data Study from the ENIGMA-PGC PTSD Consortium
BACKGROUND: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group.METHODS: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality.RESULTS: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60% test AUC for s-MRI, 59% for rs-fMRI and 56% for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75% AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance.CONCLUSION: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.</p
Towards implementation of cognitive bias modification in mental health care: State of the science, best practices, and ways forward
Cognitive bias modification (CBM) has evolved from an experimental method testing cognitive mechanisms of psychopathology to a promising tool for accessible digital mental health care. While we are still discovering the conditions under which clinically relevant effects occur, the dire need for accessible, effective, and low-cost mental health tools underscores the need for implementation where such tools are available. Providing our expert opinion as Association for Cognitive Bias Modification members, we first discuss the readiness of different CBM approaches for clinical implementation, then discuss key considerations with regard to implementation. Evidence is robust for approach bias modification as an adjunctive intervention for alcohol use disorders and interpretation bias modification as a stand-alone intervention for anxiety disorders. Theoretical predictions regarding the mechanisms by which bias and symptom change occur await further testing. We propose that CBM interventions with demonstrated efficacy should be provided to the targeted populations. To facilitate this, we set a research agenda based on implementation frameworks, which includes feasibility and acceptability testing, co-creation with end-users, and collaboration with industry partners
Intrusive Traumatic Re-Experiencing Domain (ITRED) – Functional Connectivity Feature Classification by the ENIGMA PTSD Consortium
Background
Intrusive Traumatic Re-Experiencing Domain (ITRED) was recently introduced as a novel perspective on posttraumatic psychopathology, proposing to focus research of posttraumatic stress disorder (PTSD) on the unique symptoms of intrusive and involuntary re-experiencing of the trauma, namely, intrusive memories, nightmares, and flashbacks. The aim of the present study was to explore ITRED from a neural network connectivity perspective.
Methods
Data was collected from nine sites taking part in the ENIGMA-PTSD Consortium (n=584) and included itemized PTSD symptoms scores and resting-state functional connectivity (rsFC) data. We assessed the utility of rsFC in classifying PTSD, ITRED-only (no PTSD diagnosis), and Trauma-exposed (TE)-only (no PTSD or ITRED) groups using a machine learning approach, examining well-known networks implicated in PTSD. Random forest classification model was built on a training set using cross-validation (CV), and the averaged CV model performance for classification was evaluated using area-under-the-curve (AUC). The model was tested using a fully independent portion of the data (test dataset), and the test AUC was evaluated.
Results
RsFC signatures differentiated TE-only participants from PTSD and from ITRED-only participants at about 60% accuracy. Conversely, rsFC signatures did not differentiate PTSD from ITRED-only individuals (45% accuracy). Common features differentiating TE-only participants from PTSD and from ITRED-only participants mainly involved default mode network-related pathways. Some unique features, such as connectivity within the frontal-parietal network, differentiated TE-only participants from one group (PTSD or ITRED-only), but to a lesser extent from the other.
Conclusion
Neural network connectivity supports ITRED as a novel neurobiologically-based approach to classifying post-trauma psychopathology
Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup
Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p
Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup
Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p
Intrusive Traumatic Re-Experiencing Domain: Functional Connectivity Feature Classification by the ENIGMA PTSD Consortium
Background: Intrusive traumatic re-experiencing domain (ITRED) was recently introduced as a novel perspective on posttraumatic psychopathology, proposing to focus research of posttraumatic stress disorder (PTSD) on the unique symptoms of intrusive and involuntary re-experiencing of the trauma, namely, intrusive memories, nightmares, and flashbacks. The aim of the present study was to explore ITRED from a neural network connectivity perspective. Methods: Data were collected from 9 sites taking part in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) PTSD Consortium (n = 584) and included itemized PTSD symptom scores and resting-state functional connectivity (rsFC) data. We assessed the utility of rsFC in classifying PTSD, ITRED-only (no PTSD diagnosis), and trauma-exposed (TE)–only (no PTSD or ITRED) groups using a machine learning approach, examining well-known networks implicated in PTSD. A random forest classification model was built on a training set using cross-validation, and the averaged cross-validation model performance for classification was evaluated using the area under the curve. The model was tested using a fully independent portion of the data (test dataset), and the test area under the curve was evaluated. Results: rsFC signatures differentiated TE-only participants from PTSD and ITRED-only participants at about 60% accuracy. Conversely, rsFC signatures did not differentiate PTSD from ITRED-only individuals (45% accuracy). Common features differentiating TE-only participants from PTSD and ITRED-only participants mainly involved default mode network–related pathways. Some unique features, such as connectivity within the frontoparietal network, differentiated TE-only participants from one group (PTSD or ITRED-only) but to a lesser extent from the other group. Conclusions: Neural network connectivity supports ITRED as a novel neurobiologically based approach to classifying posttrauma psychopathology
Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium
Background: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. Methods: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. Results: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for D-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. Conclusion: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable