1,380 research outputs found

    Standard-smooth hybrid inflation

    Full text link
    We consider the extended supersymmetric Pati-Salam model which, for mu>0 and universal boundary conditions, succeeds to yield experimentally acceptable b-quark masses by moderately violating Yukawa unification. It is known that this model can lead to new shifted or new smooth hybrid inflation. We show that a successful two-stage inflationary scenario can be realized within this model based only on renormalizable superpotential interactions. The cosmological scales exit the horizon during the first stage of inflation, which is of the standard hybrid type and takes place along the trivial flat direction with the inflaton driven by radiative corrections. Spectral indices compatible with the recent data can be achieved in global supersymmetry or minimal supergravity by restricting the number of e-foldings of our present horizon during the first inflationary stage. The additional e-foldings needed for solving the horizon and flatness problems are naturally provided by a second stage of inflation, which occurs mainly along the built-in new smooth hybrid inflationary path appearing right after the destabilization of the trivial flat direction at its critical point. Monopoles are formed at the end of the first stage of inflation and are, subsequently, diluted by the second stage of inflation to become utterly negligible in the present universe for almost all (for all) the allowed values of the parameters in the case of global supersymmetry (minimal supergravity).Comment: 11 pages including 2 figures, uses Revtex, version to appear in Phys. Rev.

    Initial Conditions for Supersymmetric Inflation

    Get PDF
    We perform a numerical investigation of the fields evolution in the supersymmetric inflationary model based on radiative corrections. Supergravity corrections are also included. We find that, out of all the examined initial data, only about 10% give an adequate amount of inflation and can be considered as ''natural''. Moreover, these successful initial conditions appear scattered and more or less isolated.Comment: 15 pages RevTeX 4 eps figure

    Bulk and surface magnetoinductive breathers in binary metamaterials

    Full text link
    We study theoretically the existence of bulk and surface discrete breathers in a one-dimensional magnetic metamaterial comprised of a periodic binary array of split-ring resonators. The two types of resonators differ in the size of their slits and this leads to different resonant frequencies. In the framework of the rotating-wave approximation (RWA) we construct several types of breather excitations for both the energy-conserved and the dissipative-driven systems by continuation of trivial breather solutions from the anticontinuous limit to finite couplings. Numerically-exact computations that integrate the full model equations confirm the quality of the RWA results. Moreover, it is demonstrated that discrete breathers can spontaneously appear in the dissipative-driven system as a results of a fundamental instability.Comment: 10 pages, 16 figure

    Vimentin downregulation is an inherent feature of murine erythropoiesis and occurs independently of lineage

    Get PDF
    In mammalian erythropoiesis, the mature cells of the primitive lineage remain nucleated while those of the definitive lineage are anuclear. One of the molecular and structural changes that precedes enucleation in cells of the definitive lineage is the cessation in the expression of the gene for the intermediate filament (IF) protein vimentin and the removal of all vimentin filaments from the cytoplasm. We show here that in immature primitive cells vimentin is synthesized and forms a cytoplasmic network of IFs. As differentiation proceeds in vivo, vimentin gene expression is downregulated in these cells; this is accompanied by the loss of vimentin filaments from the cytoplasm. This loss temporally coincides with the nucleus becoming freely mobile within the cytoplasm, suggesting that, while IF removal is not directly linked to the physical process of enucleation, it may be a prerequisite for the initiation of nuclear mobility in both lineages. These changes are also observed in early primitive cells cultured in vitro, suggesting that they constitute an intrinsic part of the murine erythroid differentiation program independent of lineage and hematopoietic microenvironment

    Phosphorylation of Subunit Proteins of Intermediate Filaments from Chicken Muscle and Nonmuscle Cells

    Get PDF
    The phosphorylation of the subunit proteins of intermediate (10-nm) filaments has been investigated in chicken muscle and nonmuscle cells by using a two-dimensional gel electrophoresis system. Desmin, the 50,000-dalton subunit protein of the intermediate filaments of muscle, had previously been shown to exist as two major isoelectric variants--alpha and ß --in smooth, skeletal, and cardiac chicken muscle. Incubation of skeletal and smooth muscle tissue with 32PO4{}3- reveals that the acidic variant, alpha -desmin, and three other desmin variants are phosphorylated in vivo and in vitro. Under the same conditions, minor components of alpha - and ß -tropomyosin from skeletal muscle, but not smooth muscle, are also phosphorylated. Both the phosphorylated desmin variants and the nonphosphorylated ß -desmin variant remain insoluble under conditions that solubilize actin and myosin filaments, but leave Z-discs and intermediate filaments insoluble. Primary cultures of embryonic chicken muscle labeled with 32PO4{}3- possess, in addition to the desmin variants described above, a major nonphosphorylated and multiple phosphorylated variants of the 52,000-dalton, fibroblast-type intermediate filament protein (IFP). Filamentous cytoskeletons, prepared from primary myogenic cultures by Triton X-100 extraction, contain actin and all of the phosphorylated and nonphosphorylated variants of both desmin and the IFP. Similarly, these proteins are the major components of the caps of aggregated 10-nm filaments isolated from the same cell cultures previously exposed to Colcemid. These results demonstrate that a nonphosphorylated and several phosphorylated variants of desmin and IFP are present in assembled structures in muscle and nonmuscle cells

    Nonlinear magnetoinductive transmission lines

    Full text link
    Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent capacitance. Extended numerical simulations reveal that power transmission along the array is also possible in other than the linear frequency bands, which are located close to the nonlinear resonances of a single nonlinear RLC circuit. Moreover, the effectiveness of power transmission for driving frequencies in the nonlinear bands is comparable to that in the linear band. Power transmission in the nonlinear bands occurs through the linear modes of the system, and it is closely related to the instability of a mode that is localized at the driven site.Comment: 11 pages, 11 figures, submitted to International Journal of Bifurcation and Chao

    Control of erythroid differentiation: asynchronous expression of the anion transporter and the peripheral components of the membrane skeleton in AEV- and S13-transformed cells

    Get PDF
    Chicken erythroblasts transformed with avian erythroblastosis virus or S13 virus provide suitable model systems with which to analyze the maturation of immature erythroblasts into erythrocytes. The transformed cells are blocked in differentiation at around the colony-forming unit- erythroid stage of development but can be induced to differentiate in vitro. Analysis of the expression and assembly of components of the membrane skeleton indicates that these cells simultaneously synthesize alpha-spectrin, beta-spectrin, ankyrin, and protein 4.1 at levels that are comparable to those of mature erythroblasts. However, they do not express any detectable amounts of anion transporter. The peripheral membrane skeleton components assemble transiently and are subsequently rapidly catabolized, resulting in 20-40-fold lower steady-state levels than are found in maturing erythrocytes. Upon spontaneous or chemically induced terminal differentiation of these cells expression of the anion transporter is initiated with a concommitant increase in the steady- state levels of the peripheral membrane-skeletal components. These results suggest that during erythropoiesis, expression of the peripheral components of the membrane skeleton is initiated earlier than that of the anion transporter. Furthermore, they point a key role for the anion transporter in conferring long-term stability to the assembled erythroid membrane skeleton during terminal differentiation
    • …
    corecore