734 research outputs found
Resource and Application Models for Advanced Grid Schedulers
As Grid computing is becoming an inevitable future, managing, scheduling and monitoring dynamic, heterogeneous resources will present new challenges. Solutions will have to be agile and adaptive, support self-organization and autonomous management, while maintaining optimal resource utilisation. Presented in this paper are basic principles and architectural concepts for efficient resource allocation in heterogeneous Grid environment
A Study of Grid Applications: Scheduling Perspective
As the Grid evolves from a high performance cluster middleware to a multipurpose utility computing framework, a good understanding of Grid applications, their statistics and utilisation patterns is required. This study looks at job execution times and resource utilisations in a Grid environment, and their significance in cluster and network dimensioning, local level scheduling and resource management
Enabling Adaptive Grid Scheduling and Resource Management
Wider adoption of the Grid concept has led to an increasing amount of federated
computational, storage and visualisation resources being available to scientists and
researchers. Distributed and heterogeneous nature of these resources renders most of the
legacy cluster monitoring and management approaches inappropriate, and poses new
challenges in workflow scheduling on such systems. Effective resource utilisation monitoring
and highly granular yet adaptive measurements are prerequisites for a more efficient Grid
scheduler. We present a suite of measurement applications able to monitor per-process
resource utilisation, and a customisable tool for emulating observed utilisation models. We
also outline our future work on a predictive and probabilistic Grid scheduler. The research is
undertaken as part of UK e-Science EPSRC sponsored project SO-GRM (Self-Organising
Grid Resource Management) in cooperation with BT
Measuring and Monitoring Grid Resource Utilisation
Effective resource utilisation monitoring and highly granular yet adaptive measurements are prerequisites for a more efficient Grid scheduler. We present a suite of measurement applications able to monitor per-process resource utilisation, and a customisable tool for emulating observed utilisation models
Self-organising management of Grid environments
This paper presents basic concepts, architectural principles and algorithms for efficient resource and security management in cluster computing environments and the Grid. The work presented in this paper is funded by BTExacT and the EPSRC project SO-GRM (GR/S21939)
Ensemble learning of linear perceptron; Online learning theory
Within the framework of on-line learning, we study the generalization error
of an ensemble learning machine learning from a linear teacher perceptron. The
generalization error achieved by an ensemble of linear perceptrons having
homogeneous or inhomogeneous initial weight vectors is precisely calculated at
the thermodynamic limit of a large number of input elements and shows rich
behavior. Our main findings are as follows. For learning with homogeneous
initial weight vectors, the generalization error using an infinite number of
linear student perceptrons is equal to only half that of a single linear
perceptron, and converges with that of the infinite case with O(1/K) for a
finite number of K linear perceptrons. For learning with inhomogeneous initial
weight vectors, it is advantageous to use an approach of weighted averaging
over the output of the linear perceptrons, and we show the conditions under
which the optimal weights are constant during the learning process. The optimal
weights depend on only correlation of the initial weight vectors.Comment: 14 pages, 3 figures, submitted to Physical Review
- …