734 research outputs found

    Resource and Application Models for Advanced Grid Schedulers

    Get PDF
    As Grid computing is becoming an inevitable future, managing, scheduling and monitoring dynamic, heterogeneous resources will present new challenges. Solutions will have to be agile and adaptive, support self-organization and autonomous management, while maintaining optimal resource utilisation. Presented in this paper are basic principles and architectural concepts for efficient resource allocation in heterogeneous Grid environment

    A Study of Grid Applications: Scheduling Perspective

    Get PDF
    As the Grid evolves from a high performance cluster middleware to a multipurpose utility computing framework, a good understanding of Grid applications, their statistics and utilisation patterns is required. This study looks at job execution times and resource utilisations in a Grid environment, and their significance in cluster and network dimensioning, local level scheduling and resource management

    Enabling Adaptive Grid Scheduling and Resource Management

    Get PDF
    Wider adoption of the Grid concept has led to an increasing amount of federated computational, storage and visualisation resources being available to scientists and researchers. Distributed and heterogeneous nature of these resources renders most of the legacy cluster monitoring and management approaches inappropriate, and poses new challenges in workflow scheduling on such systems. Effective resource utilisation monitoring and highly granular yet adaptive measurements are prerequisites for a more efficient Grid scheduler. We present a suite of measurement applications able to monitor per-process resource utilisation, and a customisable tool for emulating observed utilisation models. We also outline our future work on a predictive and probabilistic Grid scheduler. The research is undertaken as part of UK e-Science EPSRC sponsored project SO-GRM (Self-Organising Grid Resource Management) in cooperation with BT

    Measuring and Monitoring Grid Resource Utilisation

    Get PDF
    Effective resource utilisation monitoring and highly granular yet adaptive measurements are prerequisites for a more efficient Grid scheduler. We present a suite of measurement applications able to monitor per-process resource utilisation, and a customisable tool for emulating observed utilisation models

    A Study of Grid Applications: Scheduling Perspective

    Get PDF

    Adaptive Grid Scheduling and Resource Management

    Get PDF

    Lightweight scheduling for Grid applications

    Get PDF

    Self-organising management of Grid environments

    Get PDF
    This paper presents basic concepts, architectural principles and algorithms for efficient resource and security management in cluster computing environments and the Grid. The work presented in this paper is funded by BTExacT and the EPSRC project SO-GRM (GR/S21939)

    Ensemble learning of linear perceptron; Online learning theory

    Full text link
    Within the framework of on-line learning, we study the generalization error of an ensemble learning machine learning from a linear teacher perceptron. The generalization error achieved by an ensemble of linear perceptrons having homogeneous or inhomogeneous initial weight vectors is precisely calculated at the thermodynamic limit of a large number of input elements and shows rich behavior. Our main findings are as follows. For learning with homogeneous initial weight vectors, the generalization error using an infinite number of linear student perceptrons is equal to only half that of a single linear perceptron, and converges with that of the infinite case with O(1/K) for a finite number of K linear perceptrons. For learning with inhomogeneous initial weight vectors, it is advantageous to use an approach of weighted averaging over the output of the linear perceptrons, and we show the conditions under which the optimal weights are constant during the learning process. The optimal weights depend on only correlation of the initial weight vectors.Comment: 14 pages, 3 figures, submitted to Physical Review
    • …
    corecore