83 research outputs found

    Differential expression of interferon responsive genes in rodent models of transmissible spongiform encephalopathy disease

    Get PDF
    BACKGROUND: The pathological hallmarks of transmissible spongiform encephalopathy (TSE) diseases are the deposition of a misfolded form of a host-encoded protein (PrP(res)), marked astrocytosis, microglial activation and spongiosis. The development of powerful gene based technologies has permitted increased levels of pro-inflammatory cytokines to be demonstrated. However, due to the use of assays of differing sensitivities and typically the analysis of a single model system it remained unclear whether this was a general feature of these diseases or to what extent different model systems and routes of infection influenced the relative levels of expression. Similarly, it was not clear whether the elevated levels of cytokines observed in the brain were accompanied by similar increases in other tissues that accumulate PrP(res), such as the spleen. RESULTS: The level of expression of the three interferon responsive genes, Eif2ak2, 2'5'-OAS, and Mx2, was measured in the brains of Syrian hamsters infected with scrapie 263K, VM mice infected with bovine spongiform encephalopathy and C57BL/6 mice infected with the scrapie strain ME7. Glial fibrillary acidic expression confirmed the occurrence of astrocytosis in all models. When infected intracranially all three models showed a similar pattern of increased expression of the interferon responsive genes at the onset of clinical symptoms. At the terminal stage of the disease the level and pattern of expression of the three genes was mostly unchanged in the mouse models. In contrast, in hamsters infected by either the intracranial or intraperitoneal routes, both the level of expression and the expression of the three genes relative to one another was altered. Increased interferon responsive gene expression was not observed in a transgenic mouse model of Alzheimer's disease or the spleens of C57BL/6 mice infected with ME7. Concurrent increases in TNFα, TNFR1, Fas/ApoI receptor, and caspase 8 expression in ME7 infected C57BL/6 mice were observed. CONCLUSION: The identification of increased interferon responsive gene expression in the brains of three rodent models of TSE disease at two different stages of disease progression suggest that this may be a general feature of the disease in rodents. In addition, it was determined that the increased interferon responsive gene expression was confined to the CNS and that the TSE model system and the route of infection influenced the pattern and extent of the increased expression. The concurrent increase in initiators of Eif2ak2 mediated apoptotic pathways in C57BL/6 mice infected with ME7 suggested one mechanism by which increased interferon responsive gene expression may enhance disease progression

    13-cis-retinoic acid re-differentiation therapy and recombinant human thyrotropin-aided radioiodine treatment of non-Functional metastatic thyroid cancer: a single-center, 53-patient phase 2 study

    Get PDF
    In 30–50% of patients with metastatic non-medullary thyroid cancer the metastases are not radioiodine-avid and so there is no effective treatment. Retinoids have demonstrated inhibition of thyroid tumor growth and induction of radioiodine uptake. The aim of our study was to assess benefits of the retinoic acid (RA) treatment to re-differentiate non-functional NMTC metastases

    MicroRNA-135b Regulates Leucine Zipper Tumor Suppressor 1 in Cutaneous Squamous Cell Carcinoma

    Get PDF
    Cutaneous squamous cell carcinoma (cSCC) is the second most common skin malignancy and it presents a therapeutic challenge in organ transplant recipient patients. Despite the need, there are only a few targeted drug treatment options. Recent studies have revealed a pivotal role played by microRNAs (miRNAs) in multiple cancers, but only a few studies tested their function in cSCC. Here, we analyzed differential expression of 88 cancer related miRNAs in 43 study participants with cSCC; 32 immunocompetent, 11 OTR patients, and 15 non-lesional skin samples by microarray analysis. Of the examined miRNAs, miR-135b was the most upregulated (13.3-fold, 21.5-fold; p=0.0001) in both patient groups. Similarly, the miR-135b expression was also upregulated in three cSCC cell lines when evaluated by quantitative real-time PCR. In functional studies, inhibition of miR-135b by specific anti-miR oligonucleotides resulted in upregulation of its target gene LZTS1 mRNA and protein levels and led to decreased cell motility and invasion of both primary and metastatic cSCC cell lines. In contrast, miR-135b overexpression by synthetic miR-135b mimic induced further down-regulation of LZTS1 mRNA in vitro and increased cancer cell motility and invasiveness. Immunohistochemical evaluation of 67 cSCC tumor tissues demonstrated that miR-135b expression inversely correlated with LZTS1 staining intensity and the tumor grade. These results indicate that miR-135b functions as an oncogene in cSCC and provide new understanding into its pathological role in cSCC progression and invasiveness

    Absence of Spiroplasma or Other Bacterial 16S rRNA Genes in Brain Tissue of Hamsters with Scrapie

    No full text
    Spiroplasma spp. have been proposed to be the etiological agents of the transmissible spongiform encephalopathies (TSEs). In a blind study, a panel of 20 DNA samples was prepared from the brains of uninfected hamsters or hamsters infected with the 263K strain of scrapie. The brains of the infected hamsters contained ≥10(10) infectious doses/g. The coded panel was searched for bacterial 16S rRNA gene sequences, using primers selective for spiroplasma sequences, primers selective for mollicutes in general, and universal bacterial primers. After 35 PCR cycles, no samples were positive for spiroplasma or any other bacterial DNA, while control Spiroplasma mirum genomic DNA, spiked at 1% of the concentration required to account for the scrapie infectivity present, was readily detected. After 70 PCR cycles, nearly all samples yielded amplified products which were homologous to various bacterial 16S rRNA gene sequences, including those of frequent environmental contaminants. These sequences were seen in uninfected as well as infected samples. Because the concentration of scrapie infectivity was at a known high level, it is very unlikely that a bacterial infection at the same concentration could have escaped detection. We conclude that the infectious agent responsible for TSE disease cannot be a spiroplasma or any other eubacterial species
    • …
    corecore