136 research outputs found

    Successful tactile based visual sensory substitution use functions independently of visual pathway integrity

    Get PDF
    Purpose: Neuronal reorganization after blindness is of critical interest because it has implications for the rational prescription of artificial vision devices. The purpose of this study was to distinguish the microstructural differences between perinatally blind (PB), acquired blind (AB), and normally sighted controls (SCs) and relate these differences to performance on functional tasks using a sensory substitution device (BrainPort). Methods: We enrolled 52 subjects (PB n = 11; AB n = 35; SC n = 6). All subjects spent 15 h undergoing BrainPort device training. Outcomes of light perception, motion, direction, temporal resolution, grating, and acuity were tested at baseline and after training. Twenty-six of the subjects were scanned with a three Tesla MRI scanner for diffusion tensor imaging (DTI), and with a positron emission tomography (PET) scanner for mapping regional brain glucose consumption during sensory substitution function. Non-parametric models were used to analyze fractional anisotropy (FA; a DTI measure of microstructural integrity) of the brain via region-of-interest (ROI) analysis and tract-based spatial statistics (TBSS). Results: At baseline, all subjects performed all tasks at chance level. After training, light perception, time resolution, location and grating acuity tasks improved significantly for all subject groups. ROI and TBSS analyses of FA maps show areas of statistically significant differences (p ≤ 0.025) in the bilateral optic radiations and some visual association connections between all three groups. No relationship was found between FA and functional performance with the BrainPort. Discussion: All subjects showed performance improvements using the BrainPort irrespective of nature and duration of blindness. Definite brain areas with significant microstructural integrity changes exist among PB, AB, and NC, and these variations are most pronounced in the visual pathways. However, the use of sensory substitution devices is feasible irrespective of microstructural integrity of the primary visual pathways between the eye and the brain. Therefore, tongue based devices devices may be usable for a broad array of non-sighted patients. © 2014 Lee, Nau, Laymon, Chan, Rosario and Fisher

    A survey of geographical information systems applications for the Earth Science and Applications Division, Space Sciences Laboratory, Marshall Space Flight Center

    Get PDF
    The purpose of this document is to introduce Geographical Information System (GIS) terminology and summarize interviews conducted with scientists in the Earth Science and Applications Division (ESAD). There is a growing need in ESAD for GIS technology. With many different data sources available to the scientists comes the need to be able to process and view these data in an efficient manner. Since most of these data are stored in vastly different formats, specialized software and hardware are needed. Several ESAD scientists have been using a GIS, specifically the Man-computer Interactive Data Access System (MCIDAS). MCIDAS can solve many of the research problems that arise, but there are areas of research that need more powerful tools; one such example is the multispectral image analysis which is described in this document. Given the strong need for GIS in ESAD, we recommend that a requirements analysis and implementation plan be developed using this document as a basis for further investigation

    Quantifying metabolic heterogeneity in head and neck tumors in real time: 2-DG uptake is highest in hypoxic tumor regions

    Get PDF
    Purpose: Intratumoral metabolic heterogeneity may increase the likelihood of treatment failure due to the presence of a subset of resistant tumor cells. Using a head and neck squamous cell carcinoma (HNSCC) xenograft model and a real-time fluorescence imaging approach, we tested the hypothesis that tumors are metabolically heterogeneous, and that tumor hypoxia alters patterns of glucose uptake within the tumor. Experimental Design: Cal33 cells were grown as xenograft tumors (n = 16) in nude mice after identification of this cell line's metabolic response to hypoxia. Tumor uptake of fluorescent markers identifying hypoxia, glucose import, or vascularity was imaged simultaneously using fluorescent molecular tomography. The variability of intratumoral 2-deoxyglucose (IR800-2-DG) concentration was used to assess tumor metabolic heterogeneity, which was further investigated using immunohistochemistry for expression of key metabolic enzymes. HNSCC tumors in patients were assessed for intratumoral variability of 18F-fluorodeoxyglucose (18F-FDG) uptake in clinical PET scans. Results: IR800-2-DG uptake in hypoxic regions of Cal33 tumors was 2.04 times higher compared to the whole tumor (p = 0.0001). IR800-2-DG uptake in tumors containing hypoxic regions was more heterogeneous as compared to tumors lacking a hypoxic signal. Immunohistochemistry staining for HIF-1α, carbonic anhydrase 9, and ATP synthase subunit 5β confirmed xenograft metabolic heterogeneity. We detected heterogeneous 18F-FDG uptake within patient HNSCC tumors, and the degree of heterogeneity varied amongst tumors. Conclusion: Hypoxia is associated with increased intratumoral metabolic heterogeneity. 18F-FDG PET scans may be used to stratify patients according to the metabolic heterogeneity within their tumors, which could be an indicator of prognosis. © 2014 Nakajima et al

    MAPIR: An Airborne Polarmetric Imaging Radiometer in Support of Hydrologic Satellite Observations

    Get PDF
    In this age of dwindling water resources and increasing demands, accurate estimation of water balance components at every scale is more critical to end users than ever before. Several near-term Earth science satellite missions are aimed at global hydrologic observations. The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC to support algorithm development and validation efforts in support of these missions. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity. MAPIR has achieved Technical Readiness Level 6 with flight heritage on two very different aircraft, the NASA P-3B, and a Piper Navajo

    White matter microstructure associations to amyloid burden in adults with Down syndrome.

    Get PDF
    INTRODUCTION: Individuals with Down syndrome (DS) are at an increased risk of developing Alzheimer's Disease (AD). One of the early underlying mechanisms in AD pathology is the accumulation of amyloid protein plaques, which are deposited in extracellular gray matter and signify the first stage in the cascade of neurodegenerative events. AD-related neurodegeneration is also evidenced as microstructural changes in white matter. In this work, we explored the correlation of white matter microstructure with amyloid load to assess amyloid-related neurodegeneration in a cohort of adults with DS. METHODS: In this study of 96 adults with DS, the relation of white matter microstructure using diffusion tensor imaging (DTI) and amyloid plaque burden using [11C]PiB PET were examined. The amyloid load (AβL) derived from [11C]PiB was used as a global measure of amyloid burden. AβL and DTI measures were compared using tract-based spatial statistics (TBSS) and corrected for imaging site and chronological age. RESULTS: TBSS of the DTI maps showed widespread age-by-amyloid interaction with both fractional anisotropy (FA) and mean diffusivity (MD). Further, diffuse negative association of FA and positive association of MD with amyloid were observed. DISCUSSION: These findings are consistent with the white matter microstructural changes associated with AD disease progression in late onset AD in non-DS populations

    MAPIR: An Airborne Polarimetric Imaging Radiometer in Support of Hydrologic Satellite Observations

    Get PDF
    Results indicate successful performance of beam forming radiometer. Successful implementation of real-time calibration with emitted and injected Gaussian noise. Opportunities for improvement

    Mudança científica: modelos filosóficos e pesquisa histórica

    Full text link
    corecore