8 research outputs found

    Empowering COVID-19 Detection: Optimizing Performance Through Fine-Tuned EfficientNet Deep Learning Architecture

    Full text link
    The worldwide COVID-19 pandemic has profoundly influenced the health and everyday experiences of individuals across the planet. It is a highly contagious respiratory disease requiring early and accurate detection to curb its rapid transmission. Initial testing methods primarily revolved around identifying the genetic composition of the coronavirus, exhibiting a relatively low detection rate and requiring a time-intensive procedure. To address this challenge, experts have suggested using radiological imagery, particularly chest X-rays, as a valuable approach within the diagnostic protocol. This study investigates the potential of leveraging radiographic imaging (X-rays) with deep learning algorithms to swiftly and precisely identify COVID-19 patients. The proposed approach elevates the detection accuracy by fine-tuning with appropriate layers on various established transfer learning models. The experimentation was conducted on a COVID-19 X-ray dataset containing 2000 images. The accuracy rates achieved were impressive of 100% for EfficientNetB4 model. The fine-tuned EfficientNetB4 achieved an excellent accuracy score, showcasing its potential as a robust COVID-19 detection model. Furthermore, EfficientNetB4 excelled in identifying Lung disease using Chest X-ray dataset containing 4,350 Images, achieving remarkable performance with an accuracy of 99.17%, precision of 99.13%, recall of 99.16%, and f1-score of 99.14%. These results highlight the promise of fine-tuned transfer learning for efficient lung detection through medical imaging, especially with X-ray images. This research offers radiologists an effective means of aiding rapid and precise COVID-19 diagnosis and contributes valuable assistance for healthcare professionals in accurately identifying affected patients.Comment: Computers in Biology and Medicine [Q1, IF: 7.7, CS: 9.2

    Device agent assisted blockchain leveraged framework for Internet of Things

    Get PDF
    Blockchain (BC) is a burgeoning technology that has emerged as a promising solution to peer-to-peer communication security and privacy challenges. As a revolutionary technology, blockchain has drawn the attention of academics and researchers. Cryptocurrencies have already effectively utilized BC technology. Many researchers have sought to implement this technique in different sectors, including the Internet of Things. To store and manage IoT data, we present in this paper a lightweight BC-based architecture with a modified raft algorithm-based consensus protocol. We designed a Device Agent that executes a novel registration procedure to connect IoT devices to the blockchain. We implemented the framework on Docker using the Go programming language. We have simulated the framework on a Linux environment hosted in the cloud. We have conducted a detailed performance analysis using a variety of measures. The results demonstrate that our suggested solution is suitable for facilitating the management of IoT data with increased security and privacy. In terms of throughput and block generation time, the results indicate that our solution might be 40% to 45% faster than the existing blockchain. © 2013 IEEE

    Dynamic Task Offloading for Cloud-Assisted Vehicular Edge Computing Networks: A Non-Cooperative Game Theoretic Approach

    No full text
    Vehicular edge computing (VEC) is one of the prominent ideas to enhance the computation and storage capabilities of vehicular networks (VNs) through task offloading. In VEC, the resource-constrained vehicles offload their computing tasks to the local road-side units (RSUs) for rapid computation. However, due to the high mobility of vehicles and the overloaded problem, VEC experiences a great deal of challenges when determining a location for processing the offloaded task in real time. As a result, this degrades the quality of vehicular performance. Therefore, to deal with these above-mentioned challenges, an efficient dynamic task offloading approach based on a non-cooperative game (NGTO) is proposed in this study. In the NGTO approach, each vehicle can make its own strategy on whether a task is offloaded to a multi-access edge computing (MEC) server or a cloud server to maximize its benefits. Our proposed strategy can dynamically adjust the task-offloading probability to acquire the maximum utility for each vehicle. However, we used a best response offloading strategy algorithm for the task-offloading game in order to achieve a unique and stable equilibrium. Numerous simulation experiments affirm that our proposed scheme fulfills the performance guarantees and can reduce the response time and task-failure rate by almost 47.6% and 54.6%, respectively, when compared with the local RSU computing (LRC) scheme. Moreover, the reduced rates are approximately 32.6% and 39.7%, respectively, when compared with a random offloading scheme, and approximately 26.5% and 28.4%, respectively, when compared with a collaborative offloading scheme

    Toward Self-Driving Bicycles Using State-of-the-Art Deep Reinforcement Learning Algorithms

    No full text
    In this paper, we propose a controller for a bicycle using the DDPG (Deep Deterministic Policy Gradient) algorithm, which is a state-of-the-art deep reinforcement learning algorithm. We use a reward function and a deep neural network to build the controller. By using the proposed controller, a bicycle can not only be stably balanced but also travel to any specified location. We confirm that the controller with DDPG shows better performance than the other baselines such as Normalized Advantage Function (NAF) and Proximal Policy Optimization (PPO). For the performance evaluation, we implemented the proposed algorithm in various settings such as fixed and random speed, start location, and destination location

    Center-Emphasized Visual Saliency and a Contrast-Based Full Reference Image Quality Index

    No full text
    Objective image quality assessment (IQA) is imperative in the current multimedia-intensive world, in order to assess the visual quality of an image at close to a human level of ability. Many parameters such as color intensity, structure, sharpness, contrast, presence of an object, etc., draw human attention to an image. Psychological vision research suggests that human vision is biased to the center area of an image and display screen. As a result, if the center part contains any visually salient information, it draws human attention even more and any distortion in that part will be better perceived than other parts. To the best of our knowledge, previous IQA methods have not considered this fact. In this paper, we propose a full reference image quality assessment (FR-IQA) approach using visual saliency and contrast; however, we give extra attention to the center by increasing the sensitivity of the similarity maps in that region. We evaluated our method on three large-scale popular benchmark databases used by most of the current IQA researchers (TID2008, CSIQ and LIVE), having a total of 3345 distorted images with 28 different kinds of distortions. Our method is compared with 13 state-of-the-art approaches. This comparison reveals the stronger correlation of our method with human-evaluated values. The prediction-of-quality score is consistent for distortion specific as well as distortion independent cases. Moreover, faster processing makes it applicable to any real-time application
    corecore