6 research outputs found

    Air-Abrasion in Dentistry: A Short Review of the Materials and Performance Parameters

    Get PDF
    The selection of abrasive material and parameters of the Air-Abrasion device for a particular application is a crucial detail. However, there are no standard recommendations or manuals for choosing these details; the operator must depend on his experience and knowledge of the procedure to select the best possible material and set of parameters. This short review attempts to identify some of the effects that the selection of material and parameters could have on the performance of the Air-Abrasion procedure for a particular application. The material and parameter data are collected from various studies and categorized according to the most popular materials in use right now. These studies are then analyzed to arrive at some inferences on the performance of Air-Abrasion materials and parameters. This review arrives at a few conclusions on the effectiveness of a material and parameter set, and that there is potential for developments in the area of standardizing parameter selection; also, there is scope for further studies on Bio-Active Glass as an alternative to the materials currently used in Air-Abrasion

    Investigating the Influence of All-Ceramic Prosthetic Materials on Implants and Their Effect on the Surrounding Bone: A Finite Element Analysis

    No full text
    This study aims to assess and compare the impact of Monolithic Zirconia (MZ) and In-Ceram Zirconia (ZP) superstructures on stress distribution within implants and D2/D4 bone densities under 200 N vertical and oblique occlusal loads using three-dimensional finite element analysis via ANSYS WORKBENCH R2. The analysis employed maximum and minimum von Mises stress values. Modeling an implant (4.2 mm diameter, 10 mm length) and abutment (0.47 mm diameter), with an 8 mm diameter and 6 mm length single crown, the research identified lower von Mises stresses in D2 cancellous bone with the MZ model under vertical loading. Conversely, under oblique loading, the ZP model exhibited maximum von Mises stresses in D4 bone around the implant. This underscores the critical need to consider physical and mechanical properties, beyond mere aesthetics, for sustained implant success. The findings highlight the effect of material composition and stress distribution, emphasizing the necessity of durable and effective implant treatments

    Computational investigation of various stem designs with different radial clearances in total hip arthroplasty

    No full text
    AbstractHip implants are available in various shapes and sizes. This study aims to select the better hip implant stem design and the optimal material that can be used for the implant. For all the material combinations, radial clearance of 0, 0.1, 0.2, and 0.3 had been given between each of the junctions. Analytical calculation using Hertz contact stress formulation to find the contact pressure has been employed for a load of 2300N, which goes hand in hand with the Finite element method (FEM). The results showed that the optimal combination consists of a CoCr alloy stem, femoral head, and cup material, paired with a UHMWPE liner, for the most effective performance. This study thoroughly evaluates various hip implant options and offers important insights into their effectiveness. The results of this research will assist in choosing the most appropriate hip implant design and material, leading to better patient outcomes and advancements in medical technology for the betterment of mankind

    Optimizing stress distribution in dental air abrasion through design of experiments: a finite element analysis

    No full text
    This investigation delves into the dynamics of stress distribution during particle impacts on Incisor teeth, revealing the significant roles of particle size, impact angle, and standoff distance. An explicit dynamics study highlights a crucial revelation: optimal outcomes are achieved with a particle size of 250 µm, a 5 mm standoff distance, and an 80-degree impact angle, resulting in maximal stress manifestation. The analysis highlights a direct relationship between particle size and stress distribution, where larger particles amplify stress levels, emphasizing its pivotal role in determining stress distribution patterns. Additionally, an investigation of the Signal-to-Noise (SN) ratio reaffirms this trend, validating the direct correlation between stress distribution magnitude and abrasive particle size. Interestingly, variations in standoff distance and impact angle exhibit relatively minor effects. The ANOVA further strengthens these findings, with lower p-values for particle size and impact angle, highlighting their substantial contributions to stress distribution. Exploring interactions uncovers significant relationships between abrasive particle size and impact angle, as well as impact angle and standoff distance, with implications for stress distribution optimization. This study offers a broad investigation of the effects of abrasive particle size, standoff distance, and handle angulation on stress distribution during air abrasive procedures in dentistry. Through advanced computational modelling techniques, we interpret the complex interactions between these parameters and their impact on tooth surface integrity. The research findings not only provide valuable insights into optimizing procedure parameters for enhanced safety and efficacy but also contribute to the advancement of knowledge in the field of dental materials and techniques

    Investigating dental structure response to air abrasion: a finite element analysis

    No full text
    Air abrasion particles, propelled by a compressed air stream, remove material from the tooth’s surface. The air abrasion parameter plays an important role in removing the strains or plaque from the teeth. The research outcomes shed light on the stress distribution within dental structures using the finite element approach. Enamel, as the hardest and outermost layer of the tooth, consistently bears the highest stress levels during air abrasion procedures, regardless of whether the impact pressure is set at 80 or 100 psi. While enamel takes the initial force, it gradually transfers these forces to the dentin layer beneath, a denser but slightly less hard tissue. For abrasive particles falling within the 40 μ m to 100 μ m size range, an impact pressure of 80 psi is found to strike an optimal balance between effective material removal and minimizing damage to dental structures. However, when working with larger particles exceeding 100 μ m, increasing the impact pressure to 100 psi becomes preferable to maintain efficiency and precision. The results of this research provide valuable guidance for enhancing dental procedures with a strong focus on patient safety and the maintenance of dental health. It underscores the importance of thoughtfully adjusting parameters like particle size and impact pressure to attain favourable treatment results while prioritizing the health and comfort of patients
    corecore