85 research outputs found
The Hopf algebra of Möbius intervals
An unpublished result by the first author states that there exists a Hopf algebra H such that for any Moebius category C (in the sense of Leroux) there exists a canonical algebra morphism from the dual H* of H to the incidence algebra of C. Moreover, the Moebius inversion principle in incidence algebras follows from a `master´ inversion result in H*. The underlying module of H was originally defined as the free module on the set of iso classes of Moebius intervals, i.e. Moebius categories with initial and terminal objects. Here we consider a category of Moebius intervals and construct the Hopf algebra via the objective approach applied to a monoidal extensive category of combinatorial objects, with the values in appropriate rings being abstracted from combinatorial functors on the objects. The explicit consideration of a category of Moebius intervals leads also to two new characterizations of Moebius categories.Fil: Lawvere, F. W.. No especifÃca;Fil: Menni, MatÃas. Ministerio de Educación, Cultura, Ciencia y TecnologÃa. Secretaria de Gobierno de Ciencia TecnologÃa e Innovación Productiva. Agencia Nacional de Promoción CientÃfica y Tecnológica. Fondo Argentino Sectorial; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentin
The Hopf algebra of Möbius intervals
An unpublished result by the first author states that there exists a Hopf algebra H such that for any Moebius category C (in the sense of Leroux) there exists a canonical algebra morphism from the dual H* of H to the incidence algebra of C. Moreover, the Moebius inversion principle in incidence algebras follows from a `master´ inversion result in H*. The underlying module of H was originally defined as the free module on the set of iso classes of Moebius intervals, i.e. Moebius categories with initial and terminal objects. Here we consider a category of Moebius intervals and construct the Hopf algebra via the objective approach applied to a monoidal extensive category of combinatorial objects, with the values in appropriate rings being abstracted from combinatorial functors on the objects. The explicit consideration of a category of Moebius intervals leads also to two new characterizations of Moebius categories.Fil: Lawvere, F. W.. No especifÃca;Fil: Menni, MatÃas. Ministerio de Educación, Cultura, Ciencia y TecnologÃa. Secretaria de Gobierno de Ciencia TecnologÃa e Innovación Productiva. Agencia Nacional de Promoción CientÃfica y Tecnológica. Fondo Argentino Sectorial; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentin
Deriving Bisimulation Congruences: 2-categories vs precategories
G-relative pushouts (GRPOs) have recently been proposed by the authors as a new foundation for Leifer and Milner’s approach to deriving labelled bisimulation congruences from reduction systems. This paper develops the theory of GRPOs further, arguing that they provide a simple and powerful basis towards a comprehensive solution. As an example, we construct GRPOs in a category of ‘bunches and wirings.’ We then examine the approach based on Milner’s precategories and Leifer’s functorial reactive systems, and show that it can be recast in a much simpler way into the 2-categorical theory of GRPOs
Higher Structures in M-Theory
The key open problem of string theory remains its non-perturbative completion
to M-theory. A decisive hint to its inner workings comes from numerous
appearances of higher structures in the limits of M-theory that are already
understood, such as higher degree flux fields and their dualities, or the
higher algebraic structures governing closed string field theory. These are all
controlled by the higher homotopy theory of derived categories, generalised
cohomology theories, and -algebras. This is the introductory chapter
to the proceedings of the LMS/EPSRC Durham Symposium on Higher Structures in
M-Theory. We first review higher structures as well as their motivation in
string theory and beyond. Then we list the contributions in this volume,
putting them into context.Comment: 22 pages, Introductory Article to Proceedings of LMS/EPSRC Durham
Symposium Higher Structures in M-Theory, August 2018, references update
Kripke Semantics for Martin-L\"of's Extensional Type Theory
It is well-known that simple type theory is complete with respect to
non-standard set-valued models. Completeness for standard models only holds
with respect to certain extended classes of models, e.g., the class of
cartesian closed categories. Similarly, dependent type theory is complete for
locally cartesian closed categories. However, it is usually difficult to
establish the coherence of interpretations of dependent type theory, i.e., to
show that the interpretations of equal expressions are indeed equal. Several
classes of models have been used to remedy this problem. We contribute to this
investigation by giving a semantics that is standard, coherent, and
sufficiently general for completeness while remaining relatively easy to
compute with. Our models interpret types of Martin-L\"of's extensional
dependent type theory as sets indexed over posets or, equivalently, as
fibrations over posets. This semantics can be seen as a generalization to
dependent type theory of the interpretation of intuitionistic first-order logic
in Kripke models. This yields a simple coherent model theory, with respect to
which simple and dependent type theory are sound and complete
Bisimilarity congruences for open terms and term graphs via tile logic
The definition of sos formats ensuring that bisimilarity on closed terms is a congruence has received much attention in the last two decades. For dealing with open terms, the congruence is usually lifted from closed terms by instantiating the free variables in all possible ways; the only alternatives considered in the literature are Larsen and Xinxin’s context systems and Rensink’s conditional transition systems. We propose an approach based on tile logic, where closed and open terms are managed uniformly, and study the ‘bisimilarity as congruence’ property for several tile formats, accomplishing different concepts of open system
Shall We (Math and) Dance?
Can we use mathematics, and in particular the abstract branch of category
theory, to describe some basics of dance, and to highlight structural
similarities between music and dance? We first summarize recent studies between
mathematics and dance, and between music and categories. Then, we extend this
formalism and diagrammatic thinking style to dance.Comment: preprin
Topos theory and `neo-realist' quantum theory
Topos theory, a branch of category theory, has been proposed as mathematical
basis for the formulation of physical theories. In this article, we give a
brief introduction to this approach, emphasising the logical aspects. Each
topos serves as a `mathematical universe' with an internal logic, which is used
to assign truth-values to all propositions about a physical system. We show in
detail how this works for (algebraic) quantum theory.Comment: 22 pages, no figures; contribution for Proceedings of workshop
"Recent Developments in Quantum Field Theory", MPI MIS Leipzig, July 200
Topos Theory and Consistent Histories: The Internal Logic of the Set of all Consistent Sets
A major problem in the consistent-histories approach to quantum theory is
contending with the potentially large number of consistent sets of history
propositions. One possibility is to find a scheme in which a unique set is
selected in some way. However, in this paper we consider the alternative
approach in which all consistent sets are kept, leading to a type of `many
world-views' picture of the quantum theory. It is shown that a natural way of
handling this situation is to employ the theory of varying sets (presheafs) on
the space \B of all Boolean subalgebras of the orthoalgebra \UP of history
propositions. This approach automatically includes the feature whereby
probabilistic predictions are meaningful only in the context of a consistent
set of history propositions. More strikingly, it leads to a picture in which
the `truth values', or `semantic values' of such contextual predictions are not
just two-valued (\ie true and false) but instead lie in a larger logical
algebra---a Heyting algebra---whose structure is determined by the space \B
of Boolean subalgebras of \UP.Comment: 28 pages, LaTe
Quantum Picturalism
The quantum mechanical formalism doesn't support our intuition, nor does it
elucidate the key concepts that govern the behaviour of the entities that are
subject to the laws of quantum physics. The arrays of complex numbers are kin
to the arrays of 0s and 1s of the early days of computer programming practice.
In this review we present steps towards a diagrammatic `high-level' alternative
for the Hilbert space formalism, one which appeals to our intuition. It allows
for intuitive reasoning about interacting quantum systems, and trivialises many
otherwise involved and tedious computations. It clearly exposes limitations
such as the no-cloning theorem, and phenomena such as quantum teleportation. As
a logic, it supports `automation'. It allows for a wider variety of underlying
theories, and can be easily modified, having the potential to provide the
required step-stone towards a deeper conceptual understanding of quantum
theory, as well as its unification with other physical theories. Specific
applications discussed here are purely diagrammatic proofs of several quantum
computational schemes, as well as an analysis of the structural origin of
quantum non-locality. The underlying mathematical foundation of this high-level
diagrammatic formalism relies on so-called monoidal categories, a product of a
fairly recent development in mathematics. These monoidal categories do not only
provide a natural foundation for physical theories, but also for proof theory,
logic, programming languages, biology, cooking, ... The challenge is to
discover the necessary additional pieces of structure that allow us to predict
genuine quantum phenomena.Comment: Commissioned paper for Contemporary Physics, 31 pages, 84 pictures,
some colo
- …