894 research outputs found

    The DOE/NREL Environmental Science Program

    Get PDF
    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects

    Emission Changes Resulting from the San Pedro Bay, California Ports Truck Retirement Program

    Get PDF
    Recent US EPA emissions regulations have resulted in lower emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet turnover the State of California in 2008 along with the Ports of Los Angeles and Long Beach (San Pedro Bay Ports) in 2006 passed regulations establishing timelines forcing the retirement of older diesel trucks. On-road emissions measurements of heavy-duty diesel trucks were collected over a three-year period, beginning in 2008, at a Port of Los Angeles location and an inland weigh station on the Riverside freeway (CA SR91). At the Port location the mean fleet age decreased from 12.7 years in April of 2008 to 2.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48%) and infrared opacity (a measure of particulate matter, 54%). We also observed a twenty-fold increase in ammonia emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks. These results compare with changes at our inland site where the average ages were 7.9 years in April of 2008 and 8.3 years in April of 2010, with only small reductions in oxides of nitrogen (10%) being statistically significant. Both locations have experienced significant increases in nitrogen dioxide emissions from new trucks equipped with diesel particle filters; raising the mean nitrogen dioxide to oxides of nitrogen ratios from less than 10% to more than 30% at the Riverside freeway location

    Canadian and U.S. Antitrust Law--Areas of Overlap between Anitrust and Import Relief Laws

    Get PDF
    Competition and Dispute Resolution in the North American Context and antitrust and free trade zone

    Multi-species Remote Sensing of Vehicle Emissions on Sherman Way in Van Nuys California

    Get PDF
    As part of the 2010 Van Nuys tunnel study, researchers from the University of Denver measured on-road fuel-specific light-duty vehicle emissions from nearly 13,000 vehicles on Sherman Way (0.4 miles west of the tunnel) in Van Nuys, CA with its multi-species FEAT remote sensor a week ahead of the tunnel measurements. The remote sensing mean gram per kilogram carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx) measurements are 8.9% lower, 41%, and 24% higher than the tunnel measurements respectively. The remote sensing CO/NOx and HC/NOx mass ratios are 28% lower and 20% higher than the comparable tunnel ratios. Comparisons with the historical tunnel measurements show large reductions in CO, HC and NOx over the past 23 years, but little change in the HC/NOx mass ratio since 1995. The fleet CO and HC emissions are increasingly dominated by a few gross emitters with more than a third of the total emissions being contributed by less than 1% of the fleet. An example of this is a 1995 vehicle measured 3 times with an average HC emission of 419g/kg fuel (2-stroke snowmobiles average 475g/kg fuel) responsible for 4% of the total HC emissions. The 2008 economic downturn dramatically reduced the number of new vehicles entering the fleet, leading to an age increase (\u3e1 model year) of the Sherman Way fleet which has increased the fleet’s ammonia (NH3) emissions. The mean NH3 levels appear little changed from previous measurements collected in the Van Nuys tunnel in 1993. Comparisons between weekdays and weekend data show few fleet differences although the fraction of light-duty diesel vehicles decreased from the weekday (1.7%) to Saturday (1.2%) and Sunday (0.6%)

    Relationship between Composition and Toxicity of Motor Vehicle Emission Samples

    Get PDF
    In this study we investigated the statistical relationship between particle and semivolatile organic chemical constituents in gasoline and diesel vehicle exhaust samples, and toxicity as measured by inflammation and tissue damage in rat lungs and mutagenicity in bacteria. Exhaust samples were collected from “normal” and “high-emitting” gasoline and diesel light-duty vehicles. We employed a combination of principal component analysis (PCA) and partial least-squares regression (PLS; also known as projection to latent structures) to evaluate the relationships between chemical composition of vehicle exhaust and toxicity. The PLS analysis revealed the chemical constituents covarying most strongly with toxicity and produced models predicting the relative toxicity of the samples with good accuracy. The specific nitro-polycyclic aromatic hydrocarbons important for mutagenicity were the same chemicals that have been implicated by decades of bioassay-directed fractionation. These chemicals were not related to lung toxicity, which was associated with organic carbon and select organic compounds that are present in lubricating oil. The results demonstrate the utility of the PCA/PLS approach for evaluating composition–response relationships in complex mixture exposures and also provide a starting point for confirming causality and determining the mechanisms of the lung effects

    Fluxes, Brane Charges and Chern Morphisms of Hyperbolic Geometry

    Full text link
    The purpose of this paper is to provide the reader with a collection of results which can be found in the mathematical literature and to apply them to hyperbolic spaces that may have a role in physical theories. Specifically we apply K-theory methods for the calculation of brane charges and RR-fields on hyperbolic spaces (and orbifolds thereof). It is known that by tensoring K-groups with the rationals, K-theory can be mapped to rational cohomology by means of the Chern character isomorphisms. The Chern character allows one to relate the analytic Dirac index with a topological index, which can be expressed in terms of cohomological characteristic classes. We obtain explicit formulas for Chern character, spectral invariants, and the index of a twisted Dirac operator associated with real hyperbolic spaces. Some notes for a bivariant version of topological K-theory (KK-theory) with its connection to the index of the twisted Dirac operator and twisted cohomology of hyperbolic spaces are given. Finally we concentrate on lower K-groups useful for description of torsion charges.Comment: 26 pages, no figures, LATEX. To appear in the Classical and Quantum Gravit
    • …
    corecore