23,280 research outputs found

    The development and characteristics of a hand-held high power diode laser-based industrial tile grout removal and single-stage sealing system

    Get PDF
    As the field of laser materials processing becomes ever more diverse, the high power diode laser (HPDL) is now being regarded by many as the most applicable tool. The commercialisation of an industrial epoxy grout removal and single-stage ceramic tile grout sealing process is examined through the development of a hand-held HPDL device in this work. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given. The paper describes the characteristics and feasibility of the industrial epoxy grout removal process. A minimum power density of approximately 3 kW/cm2 was found to exist, whilst the minimum interaction time, below which there was no removal of epoxy tile grout, was found to be approximately 0.5 s. The maximum theoretical removal rate that may be achievable was calculated as being 65.98 mm2/s for a circular 2 mm diameter beam with a power density of 3 kW/cm2 and a traverse speed of 42 mm/s. In addition, the characteristics of the single-stage ceramic tile grout sealing are outlined. The single-stage ceramic tile grout sealing process yielded crack and porosity free seals which were produced in normal atmospheric conditions. Tiles were successfully sealed with power densities as low as 550 W/cm2 and at rates of up to 420 mm/min. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves

    The joint large-scale foreground-CMB posteriors of the 3-year WMAP data

    Full text link
    Using a Gibbs sampling algorithm for joint CMB estimation and component separation, we compute the large-scale CMB and foreground posteriors of the 3-yr WMAP temperature data. Our parametric data model includes the cosmological CMB signal and instrumental noise, a single power law foreground component with free amplitude and spectral index for each pixel, a thermal dust template with a single free overall amplitude, and free monopoles and dipoles at each frequency. This simple model yields a surprisingly good fit to the data over the full frequency range from 23 to 94 GHz. We obtain a new estimate of the CMB sky signal and power spectrum, and a new foreground model, including a measurement of the effective spectral index over the high-latitude sky. A particularly significant result is the detection of a common spurious offset in all frequency bands of ~ -13muK, as well as a dipole in the V-band data. Correcting for these is essential when determining the effective spectral index of the foregrounds. We find that our new foreground model is in good agreement with template-based model presented by the WMAP team, but not with their MEM reconstruction. We believe the latter may be at least partially compromised by the residual offsets and dipoles in the data. Fortunately, the CMB power spectrum is not significantly affected by these issues, as our new spectrum is in excellent agreement with that published by the WMAP team. The corresponding cosmological parameters are also virtually unchanged.Comment: 5 pages, 4 figures, submitted to ApJL. Background data are available at http://www.astro.uio.no/~hke under the Research ta

    Entanglement Patterns in Mutually Unbiased Basis Sets for N Prime-state Particles

    Get PDF
    A few simply-stated rules govern the entanglement patterns that can occur in mutually unbiased basis sets (MUBs), and constrain the combinations of such patterns that can coexist (ie, the stoichiometry) in full complements of p^N+1 MUBs. We consider Hilbert spaces of prime power dimension (as realized by systems of N prime-state particles, or qupits), where full complements are known to exist, and we assume only that MUBs are eigenbases of generalized Pauli operators, without using a particular construction. The general rules include the following: 1) In any MUB, a particular qupit appears either in a pure state, or totally entangled, and 2) in any full MUB complement, each qupit is pure in p+1 bases (not necessarily the same ones), and totally entangled in the remaining p^N-p. It follows that the maximum number of product bases is p+1, and when this number is realized, all remaining p^N-p bases in the complement are characterized by the total entanglement of every qupit. This "standard distribution" is inescapable for two qupits (of any p), where only product and generalized Bell bases are admissible MUB types. This and the following results generalize previous results for qubits and qutrits. With three qupits there are three MUB types, and a number of combinations (p+2) are possible in full complements. With N=4, there are 6 MUB types for p=2, but new MUB types become possible with larger p, and these are essential to the realization of full complements. With this example, we argue that new MUB types, showing new entanglement characteristics, should enter with every step in N, and when N is a prime plus 1, also at critical p values, p=N-1. Such MUBs should play critical roles in filling complements.Comment: 27 pages, one figure, to be submitted to Physical Revie

    Solar electric propulsion for Mars transport vehicles

    Get PDF
    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed

    Unusual signatures of the ferromagnetic transition in the heavy Fermion compound UMn2_2Al20_{20}

    Full text link
    Magnetic susceptibility results for single crystals of the new cubic compounds UT2_2Al20_{20} (T=Mn, V, and Mo) are reported. Magnetization, specific heat, resistivity, and neutron diffraction results for a single crystal and neutron diffraction and inelastic spectra for a powder sample are reported for UMn2_2Al20_{20}. For T = V and Mo, temperature independent Pauli paramagnetism is observed. For UMn2_2Al20_{20}, a ferromagnetic transition is observed in the magnetic susceptibility at TcT_c = 20 K. The specific heat anomaly at TcT_c is very weak while no anomaly in the resistivity is seen at TcT_c. We discuss two possible origins for this behavior of UMn2_2Al20_{20}: moderately small moment itinerant ferromagnetism, or induced local moment ferromagnetism.Comment: 5 pages, 5 figures, to be published in Phys. rev.

    High power diode laser surface glazing of concrete

    Get PDF
    This present work describes the utilisation of the relatively novel high power diode laser (HPDL) to generate a surface glaze on the ordinary Portland cement (OPC) surface of concrete. The value of such an investigation would be to facilitate the hitherto impossible task of generating a durable and long-lasting surface seal on the concrete, thereby extending the life and applications base of the concrete. The basic process phenomena are investigated and the laser effects in terms of glaze morphology, composition and microstructure are presented. Also, the resultant heat affects are analysed and described, as well as the effects of the shield gases, O2 and Ar, during laser processing. HPDL glazing of OPC was successfully demonstrated with power densities as low as 750 W cm-2 and at scanning rates up to 480 mm min-1. The work showed that the generation of the surface glaze resulted in improved mechanical and chemical properties over the untreated OPC surface of concrete. Both untreated and HPDL glazed OPC were tested for pull-off strength, rupture strength, water absorption, wear resistance and corrosion resistance. The OPC laser glaze exhibited clear improvements in wear, water sorptivity, and resistance (up to 80% concentration) to nitric acid, sodium hydroxide and detergent. Life assessment testing revealed that the OPC laser glaze had an increase in actual wear life of 1.3 to 14.8 times over the untreated OPC surface of concrete, depending upon the corrosive environment

    Reducing orbital eccentricity of precessing black-hole binaries

    Full text link
    Building initial conditions for generic binary black-hole evolutions without initial spurious eccentricity remains a challenge for numerical-relativity simulations. This problem can be overcome by applying an eccentricity-removal procedure which consists in evolving the binary for a couple of orbits, estimating the eccentricity, and then correcting the initial conditions. The presence of spins can complicate this procedure. As predicted by post-Newtonian theory, spin-spin interactions and precession prevent the binary from moving along an adiabatic sequence of spherical orbits, inducing oscillations in the radial separation and in the orbital frequency. However, spin-induced oscillations occur at approximately twice the orbital frequency, therefore they can be distinguished from the initial spurious eccentricity, which occurs at approximately the orbital frequency. We develop a new removal procedure based on the derivative of the orbital frequency and find that it is successful in reducing the eccentricity measured in the orbital frequency to less than 0.0001 when moderate spins are present. We test this new procedure using numerical-relativity simulations of binary black holes with mass ratios 1.5 and 3, spin magnitude 0.5 and various spin orientations. The numerical simulations exhibit spin-induced oscillations in the dynamics at approximately twice the orbital frequency. Oscillations of similar frequency are also visible in the gravitational-wave phase and frequency of the dominant mode.Comment: 17 pages, 11 figures, fixed typo
    • 

    corecore