5,707 research outputs found

    Gravitino or Axino Dark Matter with Reheat Temperature as high as 101610^{16} GeV

    Full text link
    A new scheme for lightest supersymmetric particle (LSP) dark matter is introduced and studied in theories of TeV supersymmetry with a QCD axion, aa, and a high reheat temperature after inflation, TRT_R. A large overproduction of axinos (a~\tilde{a}) and gravitinos (G~\tilde{G}) from scattering at TRT_R, and from freeze-in at the TeV scale, is diluted by the late decay of a saxion condensate that arises from inflation. The two lightest superpartners are a~\tilde{a}, with mass of order the TeV scale, and G~\tilde{G} with mass m3/2m_{3/2} anywhere between the keV and TeV scales, depending on the mediation scale of supersymmetry breaking. Dark matter contains both warm and cold components: for G~\tilde{G} LSP the warm component arises from a~G~a\tilde{a} \rightarrow \tilde{G}a, while for a~\tilde{a} LSP the warm component arises from G~a~a\tilde{G} \rightarrow \tilde{a}a. The free-streaming scale for the warm component is predicted to be of order 1 Mpc (and independent of m3/2m_{3/2} in the case of G~\tilde{G} LSP). TRT_R can be as high as 101610^{16} GeV, for any value of m3/2m_{3/2}, solving the gravitino problem. The PQ symmetry breaking scale VPQV_{PQ} depends on TRT_R and m3/2m_{3/2} and can be anywhere in the range (10101016)(10^{10} - 10^{16}) GeV. Detailed predictions are made for the lifetime of the neutralino LOSP decaying to a~+h/Z\tilde{a}+ h/Z and G~+h/Z/γ\tilde{G}+h/Z/\gamma, which is in the range of (101106)(10^{-1}-10^6)m over much of parameter space. For an axion misalignment angle of order unity, the axion contribution to dark matter is sub-dominant, except when VPQV_{PQ} approaches 101610^{16} GeV.Comment: 43 pages, 16 figure

    Bargaining with Incomplete Information

    Get PDF
    A central question in economics is understanding the difficulties that parties have in reaching mutually beneficial agreements. Informational differences provide an appealing explanation for bargaining inefficiencies. This chapter provides an overview of the theoretical and empirical literature on bargaining with incomplete information. The chapter begins with an analysis of bargaining within a mechanism design framework. A modern development is provided of the classic result that, given two parties with independent private valuations, ex post efficiency is attainable if and only if it is common knowledge that gains from trade exist. The classic problems of efficient trade with one-sided incomplete information but interdependent valuations, and of efficiently dissolving a partnership with two-sided incomplete information, are also reviewed using mechanism design. The chapter then proceeds to study bargaining where the parties sequentially exchange offers. Under one-sided incomplete information, it considers sequential bargaining between a seller with a known valuation and a buyer with a private valuation. When there is a "gap" between the seller's valuation and the support of buyer valuations, the seller-offer game has essentially a unique sequential equilibrium. This equilibrium exhibits the following properties: it is stationary, trade occurs in finite time, and the price is favorable to the informed party (the Coase Conjecture). The alternating-offer game exhibits similar properties, when a refinement of sequential equilibrium is applied. However, in the case of "no gap" between the seller's valuation and the support of buyer valuations, the bargaining does not conclude with probability one after any finite number of periods, and it does not follow that sequential equilibria need be stationary. If stationarity is nevertheless assumed, then the results parallel those for the "gap" case. However, if stationarity is not assumed, then instead a folk theorem obtains, so substantial delay is possible and the uninformed party may receive substantial surplus. The chapter also briefly sketches results for sequential bargaining with two-sided incomplete information. Finally, it reviews the empirical evidence on strategic bargaining with private information by focusing on one of the most prominent examples of bargaining: union contract negotiations.Bargaining; Delay; Incomplete Information

    Saxion Cosmology for Thermalized Gravitino Dark Matter

    Full text link
    In all supersymmetric theories, gravitinos, with mass suppressed by the Planck scale, are an obvious candidate for dark matter; but if gravitinos ever reached thermal equilibrium, such dark matter is apparently either too abundant or too hot, and is excluded. However, in theories with an axion, a saxion condensate is generated during an early era of cosmological history and its late decay dilutes dark matter. We show that such dilution allows previously thermalized gravitinos to account for the observed dark matter over very wide ranges of gravitino mass, keV < m3/2m_{3/2} < TeV, axion decay constant, 10910^9 GeV < faf_a < 101610^{16} GeV, and saxion mass, 10 MeV < msm_s < 100 TeV. Constraints on this parameter space are studied from BBN, supersymmetry breaking, gravitino and axino production from freeze-in and saxion decay, and from axion production from both misalignment and parametric resonance mechanisms. Large allowed regions of (m3/2,fa,ms)(m_{3/2}, f_a, m_s) remain, but differ for DFSZ and KSVZ theories. Superpartner production at colliders may lead to events with displaced vertices and kinks, and may contain saxions decaying to (WW,ZZ,hh),gg,γγ(WW,ZZ,hh), gg, \gamma \gamma or a pair of Standard Model fermions. Freeze-in may lead to a sub-dominant warm component of gravitino dark matter, and saxion decay to axions may lead to dark radiation.Comment: 30 pages, 4 figure

    THE CONSEQUENCES OF AN OPEN FIELD BURNING BAN ON THE U.S. KENTUCKY BLUEGRASS SEED INDUSTRY

    Get PDF
    An econometric model of the U.S. Kentucky bluegrass seed industry in the Pacific Northwest is specified and estimated in order to evaluate the short and long run consequences of yield reductions associated with a ban on open field burning of grass residues. While results differ among regions, model simulations of short run effects of reduced yields attributed to the burning ban indicate price increases for grass seed ranging from 0 to 69 percent and long run effects indicate increased acreage of grass seed production due to producers responses to higher prices.Crop Production/Industries,

    Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood

    Full text link
    We consider the problem of discriminative factor analysis for data that are in general non-Gaussian. A Bayesian model based on the ranks of the data is proposed. We first introduce a new {\em max-margin} version of the rank-likelihood. A discriminative factor model is then developed, integrating the max-margin rank-likelihood and (linear) Bayesian support vector machines, which are also built on the max-margin principle. The discriminative factor model is further extended to the {\em nonlinear} case through mixtures of local linear classifiers, via Dirichlet processes. Fully local conjugacy of the model yields efficient inference with both Markov Chain Monte Carlo and variational Bayes approaches. Extensive experiments on benchmark and real data demonstrate superior performance of the proposed model and its potential for applications in computational biology.Comment: 14 pages, 7 figures, ICML 201

    A Generalized Theorem of the Maximum

    Get PDF
    This paper generalizes the Theorem of the Maximum (Berge, 1963) to allow for discontinuous changes in the domain and the objective function. It also provides a geometrical version of the (generalized) theorem.

    Axion Kinetic Misalignment Mechanism

    Full text link
    In the conventional misalignment mechanism, the axion field has a constant initial field value in the early universe and later begins to oscillate. We present an alternative scenario where the axion field has a nonzero initial velocity, allowing an axion decay constant much below the conventional prediction from axion dark matter. This axion velocity can be generated from explicit breaking of the axion shift symmetry in the early universe, which may occur as this symmetry is approximate.Comment: 7+4 pages, 2+2 figures; v2: Supplemental Material and references added, matches journal versio

    Predictions for Axion Couplings from ALP Cogenesis

    Full text link
    Adding an axion-like particle (ALP) to the Standard Model, with a field velocity in the early universe, simultaneously explains the observed baryon and dark matter densities. This requires one or more couplings between the ALP and photons, nucleons, and/or electrons that are predicted as functions of the ALP mass. These predictions arise because the ratio of dark matter to baryon densities is independent of the ALP field velocity, allowing a correlation between the ALP mass, mam_a, and decay constant, faf_a. The predicted couplings are orders of magnitude larger than those for the QCD axion and for dark matter from the conventional ALP misalignment mechanism. As a result, this scheme, ALP cogenesis, is within reach of future experimental ALP searches from the lab and stellar objects, and for dark matter.Comment: 24 pages, 3 figure

    The Organizational Politics of Defense

    Get PDF

    Optimal 2,3-Trees

    Get PDF
    The 2,3-trees that are optimal in the sense of having minimal expected number of nodes visited per access are characterized in terms of their “profiles”. The characterization leads directly to a linear-time algorithm for constructing a K-key optimal 2,3-tree for a sorted list of K keys. A number of results are derived that demonstrate how different in structure these optimal 2,3-trees are from their “average” cousins
    corecore