4,539 research outputs found
Modular Biped Robotic Base
This report contains the final developments and research involved with the modular biped robotic base. A need was first identified in 2011 when President Obama announced the National Robotics Initiative, an initiative focused on the funding of robotic development to work alongside or cooperatively with humans. This scope of this project concerns building a robotic base modeled after human legs and hips, capable of interfacing with future modular subsystems depending on what tasks are trying to be accomplished. Firstly, a mathematical torque simulation of the hip, knee, and ankle joints was developed in MATLAB. Using this information, complimentary actuators and driver circuitry were selected. A 3-D model of the leg and hip structure was drawn and simulated in SOLIDWORKS. Communication between the motors and the master controller was developed to provide precise control over each individual motor. After individual motor testing, a leg model was assembled and troubleshooting took place to determine proper alignment and placement of position sensors. The legs and hips were then fully integrated. A successful model was achieved capable of walking with full integration with subsystems of various types
A Millisecond Interferometric Search for Fast Radio Bursts with the Very Large Array
We report on the first millisecond timescale radio interferometric search for
the new class of transient known as fast radio bursts (FRBs). We used the Very
Large Array (VLA) for a 166-hour, millisecond imaging campaign to detect and
precisely localize an FRB. We observed at 1.4 GHz and produced visibilities
with 5 ms time resolution over 256 MHz of bandwidth. Dedispersed images were
searched for transients with dispersion measures from 0 to 3000 pc/cm3. No
transients were detected in observations of high Galactic latitude fields taken
from September 2013 though October 2014. Observations of a known pulsar show
that images typically had a thermal-noise limited sensitivity of 120 mJy/beam
(8 sigma; Stokes I) in 5 ms and could detect and localize transients over a
wide field of view. Our nondetection limits the FRB rate to less than
7e4/sky/day (95% confidence) above a fluence limit of 1.2 Jy-ms. Assuming a
Euclidean flux distribution, the VLA rate limit is inconsistent with the
published rate of Thornton et al. We recalculate previously published rates
with a homogeneous consideration of the effects of primary beam attenuation,
dispersion, pulse width, and sky brightness. This revises the FRB rate downward
and shows that the VLA observations had a roughly 60% chance of detecting a
typical FRB and that a 95% confidence constraint would require roughly 500
hours of similar VLA observing. Our survey also limits the repetition rate of
an FRB to 2 times less than any known repeating millisecond radio transient.Comment: Submitted to ApJ. 13 pages, 9 figure
The VISTA Science Archive
We describe the VISTA Science Archive (VSA) and its first public release of
data from five of the six VISTA Public Surveys. The VSA exists to support the
VISTA Surveys through their lifecycle: the VISTA Public Survey consortia can
use it during their quality control assessment of survey data products before
submission to the ESO Science Archive Facility (ESO SAF); it supports their
exploitation of survey data prior to its publication through the ESO SAF; and,
subsequently, it provides the wider community with survey science exploitation
tools that complement the data product repository functionality of the ESO SAF.
This paper has been written in conjunction with the first public release of
public survey data through the VSA and is designed to help its users understand
the data products available and how the functionality of the VSA supports their
varied science goals. We describe the design of the database and outline the
database-driven curation processes that take data from nightly
pipeline-processed and calibrated FITS files to create science-ready survey
datasets. Much of this design, and the codebase implementing it, derives from
our earlier WFCAM Science Archive (WSA), so this paper concentrates on the
VISTA-specific aspects and on improvements made to the system in the light of
experience gained in operating the WSA.Comment: 22 pages, 16 figures. Minor edits to fonts and typos after
sub-editting. Published in A&
The Effects of Pictorial Realism, Delay of Visual Feedback, and Observer Interactivity on the Subjective Sense of Presence
Two experiments examined the effects of pictorial realism, observer interactivity, and delay of visual feedback on the sense of presence. Subjects were presented pairs of virtual enviornments (a simulated driving task) that differed in one or more ways from each other. After subjects had completed the second member of each pair they reported which of the two had produced the greater amount of presence and indicated the size of this difference by means of a 1-100 scale. As predicted, realism and interactivity increased presence while delay of visual feedback diminished it. According to subjects\u27 verbal responses to a postexperiment interview, pictorial realism was the least influential of the three variables examined. Further, although some subjects reported an increase in the sense of presence over the course of the experiment, most said it reamined unchanged or became weaker
Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview
Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for an MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV), and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Super Sonic Retro Propulsion (SSRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars. The MAV uses a storable liquid bi-propellant propulsion system to deliver the ERV to a Mars phasing orbit. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Upon arrival at Earth, the ERV performs Earth and lunar swing-bys and is placed into a lunar trailing circular orbit - an Earth orbit, at lunar distance. A later mission, using Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the sample container and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of pristine martian materials into the Earth's biosphere. The analysis methods employed standard and specialized aerospace engineering tools. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships (MERs). The architecture was iterated until overall mission convergence was achieved on at least one path. Subsystems analyzed in this study include support structures, power system, nose fairing, thermal insulation, actuation devices, MAV exhaust venting, and GN&C. Best practice application of loads, mass growth contingencies, and resource margins were used. For Falcon Heavy capabilities and Dragon subsystems we utilized publically available data from SpaceX, published analyses from other sources, as well as our own engineering and aerodynamic estimates. Earth Launch mass is under 11 mt, which is within the estimated capability of a Falcon Heavy, with margin. Total entry masses between 7 and 10 mt were considered with closure occurring between 9 and 10 mt. Propellant mass fractions for each major phase of the EDL - Entry, Terminal Descent, and Hazard Avoidance - have been derived. An assessment of the effect of the entry conditions on the thermal protection system (TPS), currently in use for Dragon missions, shows no significant stressors. A useful payload mass of 2.0 mt is provided and includes mass growth allowances for the MAV, the ERV, and mission unique equipment. We also report options for the MAV and ERV, including propulsion systems, crewed versus robotic retrieval mission, as well as direct Earth entry. International planetary protection policies as well as verifiable means of compliance will have a large impact on any MSR mission design. We identify areas within our architecture where such impacts occur. We also describe preliminary compliance measures that will be the subject of future work. This work shows that emerging commercial capabilities as well as new methodologies can be used to efficiently support an important planetary science objective. The work also has applications for human exploration missions that use propulsive EDL technique
Gravitational Lensing Signature of Long Cosmic Strings
The gravitational lensing by long, wiggly cosmic strings is shown to produce
a large number of lensed images of a background source. In addition to pairs of
images on either side of the string, a number of small images outline the
string due to small-scale structure on the string. This image pattern could
provide a highly distinctive signature of cosmic strings. Since the optical
depth for multiple imaging of distant quasar sources by long strings may be
comparable to that by galaxies, these image patterns should be clearly
observable in the next generation of redshift surveys such as the Sloan Digital
Sky Survey.Comment: 4 pages, revtex with 3 postscript figures include
- …