5,980 research outputs found

    Loop-Erasure of Plane Brownian Motion

    Full text link
    We use the coupling technique to prove that there exists a loop-erasure of a plane Brownian motion stopped on exiting a simply connected domain, and the loop-erased curve is the reversal of a radial SLE2_2 curve.Comment: 10 page

    SLE-type growth processes and the Yang-Lee singularity

    Full text link
    The recently introduced SLE growth processes are based on conformal maps from an open and simply-connected subset of the upper half-plane to the half-plane itself. We generalize this by considering a hierarchy of stochastic evolutions mapping open and simply-connected subsets of smaller and smaller fractions of the upper half-plane to these fractions themselves. The evolutions are all driven by one-dimensional Brownian motion. Ordinary SLE appears at grade one in the hierarchy. At grade two we find a direct correspondence to conformal field theory through the explicit construction of a level-four null vector in a highest-weight module of the Virasoro algebra. This conformal field theory has central charge c=-22/5 and is associated to the Yang-Lee singularity. Our construction may thus offer a novel description of this statistical model.Comment: 12 pages, LaTeX, v2: thorough revision with corrections, v3: version to be publishe

    Reversed radial SLE and the Brownian loop measure

    Full text link
    The Brownian loop measure is a conformally invariant measure on loops in the plane that arises when studying the Schramm-Loewner evolution (SLE). When an SLE curve in a domain evolves from an interior point, it is natural to consider the loops that hit the curve and leave the domain, but their measure is infinite. We show that there is a related normalized quantity that is finite and invariant under M\"obius transformations of the plane. We estimate this quantity when the curve is small and the domain simply connected. We then use this estimate to prove a formula for the Radon-Nikodym derivative of reversed radial SLE with respect to whole-plane SLE.Comment: 44 page

    Restriction Properties of Annulus SLE

    Full text link
    For κ∈(0,4]\kappa\in(0,4], a family of annulus SLE(κ;Λ)(\kappa;\Lambda) processes were introduced in [14] to prove the reversibility of whole-plane SLE(κ)(\kappa). In this paper we prove that those annulus SLE(κ;Λ)(\kappa;\Lambda) processes satisfy a restriction property, which is similar to that for chordal SLE(κ)(\kappa). Using this property, we construct n≥2n\ge 2 curves crossing an annulus such that, when any n−1n-1 curves are given, the last curve is a chordal SLE(κ)(\kappa) trace.Comment: 37 page

    Computing the Loewner driving process of random curves in the half plane

    Full text link
    We simulate several models of random curves in the half plane and numerically compute their stochastic driving process (as given by the Loewner equation). Our models include models whose scaling limit is the Schramm-Loewner evolution (SLE) and models for which it is not. We study several tests of whether the driving process is Brownian motion. We find that just testing the normality of the process at a fixed time is not effective at determining if the process is Brownian motion. Tests that involve the independence of the increments of Brownian motion are much more effective. We also study the zipper algorithm for numerically computing the driving function of a simple curve. We give an implementation of this algorithm which runs in a time O(N^1.35) rather than the usual O(N^2), where N is the number of points on the curve.Comment: 20 pages, 4 figures. Changes to second version: added new paragraph to conclusion section; improved figures cosmeticall

    Stationarity of SLE

    Full text link
    A new method to study a stopped hull of SLE(kappa,rho) is presented. In this approach, the law of the conformal map associated to the hull is invariant under a SLE induced flow. The full trace of a chordal SLE(kappa) can be studied using this approach. Some example calculations are presented.Comment: 14 pages with 1 figur
    • …
    corecore