110 research outputs found
The Green's function for the radial Schramm-Loewner evolution
We prove the existence of the Green's function for radial SLE(k) for k<8.
Unlike the chordal case where an explicit formula for the Green's function is
known for all values of k<8, we give an explicit formula only for k=4. For
other values of k, we give a formula in terms of an expectation with respect to
SLE conditioned to go through a point.Comment: v1: 16 pages, 0 figure
Bridge Decomposition of Restriction Measures
Motivated by Kesten's bridge decomposition for two-dimensional self-avoiding
walks in the upper half plane, we show that the conjectured scaling limit of
the half-plane SAW, the SLE(8/3) process, also has an appropriately defined
bridge decomposition. This continuum decomposition turns out to entirely be a
consequence of the restriction property of SLE(8/3), and as a result can be
generalized to the wider class of restriction measures. Specifically we show
that the restriction hulls with index less than one can be decomposed into a
Poisson Point Process of irreducible bridges in a way that is similar to Ito's
excursion decomposition of a Brownian motion according to its zeros.Comment: 24 pages, 2 figures. Final version incorporates minor revisions
suggested by the referee, to appear in Jour. Stat. Phy
Monte Carlo Tests of SLE Predictions for the 2D Self-Avoiding Walk
The conjecture that the scaling limit of the two-dimensional self-avoiding
walk (SAW) in a half plane is given by the stochastic Loewner evolution (SLE)
with leads to explicit predictions about the SAW. A remarkable
feature of these predictions is that they yield not just critical exponents,
but probability distributions for certain random variables associated with the
self-avoiding walk. We test two of these predictions with Monte Carlo
simulations and find excellent agreement, thus providing numerical support to
the conjecture that the scaling limit of the SAW is SLE.Comment: TeX file using APS REVTeX 4.0. 10 pages, 5 figures (encapsulated
postscript
Transforming fixed-length self-avoiding walks into radial SLE_8/3
We conjecture a relationship between the scaling limit of the fixed-length
ensemble of self-avoiding walks in the upper half plane and radial SLE with
kappa=8/3 in this half plane from 0 to i. The relationship is that if we take a
curve from the fixed-length scaling limit of the SAW, weight it by a suitable
power of the distance to the endpoint of the curve and then apply the conformal
map of the half plane that takes the endpoint to i, then we get the same
probability measure on curves as radial SLE. In addition to a non-rigorous
derivation of this conjecture, we support it with Monte Carlo simulations of
the SAW. Using the conjectured relationship between the SAW and radial SLE, our
simulations give estimates for both the interior and boundary scaling
exponents. The values we obtain are within a few hundredths of a percent of the
conjectured values
A Fast Algorithm for Simulating the Chordal Schramm-Loewner Evolution
The Schramm-Loewner evolution (SLE) can be simulated by dividing the time
interval into N subintervals and approximating the random conformal map of the
SLE by the composition of N random, but relatively simple, conformal maps. In
the usual implementation the time required to compute a single point on the SLE
curve is O(N). We give an algorithm for which the time to compute a single
point is O(N^p) with p<1. Simulations with kappa=8/3 and kappa=6 both give a
value of p of approximately 0.4.Comment: 17 pages, 10 figures. Version 2 revisions: added a paragraph to
introduction, added 5 references and corrected a few typo
Computing the Loewner driving process of random curves in the half plane
We simulate several models of random curves in the half plane and numerically
compute their stochastic driving process (as given by the Loewner equation).
Our models include models whose scaling limit is the Schramm-Loewner evolution
(SLE) and models for which it is not. We study several tests of whether the
driving process is Brownian motion. We find that just testing the normality of
the process at a fixed time is not effective at determining if the process is
Brownian motion. Tests that involve the independence of the increments of
Brownian motion are much more effective. We also study the zipper algorithm for
numerically computing the driving function of a simple curve. We give an
implementation of this algorithm which runs in a time O(N^1.35) rather than the
usual O(N^2), where N is the number of points on the curve.Comment: 20 pages, 4 figures. Changes to second version: added new paragraph
to conclusion section; improved figures cosmeticall
The Length of an SLE - Monte Carlo Studies
The scaling limits of a variety of critical two-dimensional lattice models
are equal to the Schramm-Loewner evolution (SLE) for a suitable value of the
parameter kappa. These lattice models have a natural parametrization of their
random curves given by the length of the curve. This parametrization (with
suitable scaling) should provide a natural parametrization for the curves in
the scaling limit. We conjecture that this parametrization is also given by a
type of fractal variation along the curve, and present Monte Carlo simulations
to support this conjecture. Then we show by simulations that if this fractal
variation is used to parametrize the SLE, then the parametrized curves have the
same distribution as the curves in the scaling limit of the lattice models with
their natural parametrization.Comment: 18 pages, 10 figures. Version 2 replaced the use of "nu" for the
"growth exponent" by 1/d_H, where d_H is the Hausdorff dimension. Various
minor errors were also correcte
Pro/DESKTOP in Schools: A pilot research study
Following the launch and widespread dissemination of the CAD/CAM in Schools Initiative and ProlDESKTOP (hereafter PDT) software, DATA recognised that the changes that are being brought about in children's designing are sufficiently profound to deserve careful research. This project is a small-scale exploration of the impact of this CAD initiative on children's designing and on the standards of work that can be achieved. Its aim is not to produce answers to these difficult questions. Rather its purpose is to clarify the questions that might need to be asked in a full scale evaluation. Because of the timing of this project and the looming examination demands in Years II, 12 and 13, we were asked to focus on Years 9 and 10. This paper represents a brief synopsis of some of the major issues that emerged through the study
- …