110 research outputs found

    The Green's function for the radial Schramm-Loewner evolution

    Full text link
    We prove the existence of the Green's function for radial SLE(k) for k<8. Unlike the chordal case where an explicit formula for the Green's function is known for all values of k<8, we give an explicit formula only for k=4. For other values of k, we give a formula in terms of an expectation with respect to SLE conditioned to go through a point.Comment: v1: 16 pages, 0 figure

    Bridge Decomposition of Restriction Measures

    Full text link
    Motivated by Kesten's bridge decomposition for two-dimensional self-avoiding walks in the upper half plane, we show that the conjectured scaling limit of the half-plane SAW, the SLE(8/3) process, also has an appropriately defined bridge decomposition. This continuum decomposition turns out to entirely be a consequence of the restriction property of SLE(8/3), and as a result can be generalized to the wider class of restriction measures. Specifically we show that the restriction hulls with index less than one can be decomposed into a Poisson Point Process of irreducible bridges in a way that is similar to Ito's excursion decomposition of a Brownian motion according to its zeros.Comment: 24 pages, 2 figures. Final version incorporates minor revisions suggested by the referee, to appear in Jour. Stat. Phy

    Monte Carlo Tests of SLE Predictions for the 2D Self-Avoiding Walk

    Full text link
    The conjecture that the scaling limit of the two-dimensional self-avoiding walk (SAW) in a half plane is given by the stochastic Loewner evolution (SLE) with κ=8/3\kappa=8/3 leads to explicit predictions about the SAW. A remarkable feature of these predictions is that they yield not just critical exponents, but probability distributions for certain random variables associated with the self-avoiding walk. We test two of these predictions with Monte Carlo simulations and find excellent agreement, thus providing numerical support to the conjecture that the scaling limit of the SAW is SLE8/3_{8/3}.Comment: TeX file using APS REVTeX 4.0. 10 pages, 5 figures (encapsulated postscript

    Transforming fixed-length self-avoiding walks into radial SLE_8/3

    Full text link
    We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial SLE with kappa=8/3 in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and then apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial SLE. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial SLE, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values

    A Fast Algorithm for Simulating the Chordal Schramm-Loewner Evolution

    Full text link
    The Schramm-Loewner evolution (SLE) can be simulated by dividing the time interval into N subintervals and approximating the random conformal map of the SLE by the composition of N random, but relatively simple, conformal maps. In the usual implementation the time required to compute a single point on the SLE curve is O(N). We give an algorithm for which the time to compute a single point is O(N^p) with p<1. Simulations with kappa=8/3 and kappa=6 both give a value of p of approximately 0.4.Comment: 17 pages, 10 figures. Version 2 revisions: added a paragraph to introduction, added 5 references and corrected a few typo

    Computing the Loewner driving process of random curves in the half plane

    Full text link
    We simulate several models of random curves in the half plane and numerically compute their stochastic driving process (as given by the Loewner equation). Our models include models whose scaling limit is the Schramm-Loewner evolution (SLE) and models for which it is not. We study several tests of whether the driving process is Brownian motion. We find that just testing the normality of the process at a fixed time is not effective at determining if the process is Brownian motion. Tests that involve the independence of the increments of Brownian motion are much more effective. We also study the zipper algorithm for numerically computing the driving function of a simple curve. We give an implementation of this algorithm which runs in a time O(N^1.35) rather than the usual O(N^2), where N is the number of points on the curve.Comment: 20 pages, 4 figures. Changes to second version: added new paragraph to conclusion section; improved figures cosmeticall

    The Length of an SLE - Monte Carlo Studies

    Full text link
    The scaling limits of a variety of critical two-dimensional lattice models are equal to the Schramm-Loewner evolution (SLE) for a suitable value of the parameter kappa. These lattice models have a natural parametrization of their random curves given by the length of the curve. This parametrization (with suitable scaling) should provide a natural parametrization for the curves in the scaling limit. We conjecture that this parametrization is also given by a type of fractal variation along the curve, and present Monte Carlo simulations to support this conjecture. Then we show by simulations that if this fractal variation is used to parametrize the SLE, then the parametrized curves have the same distribution as the curves in the scaling limit of the lattice models with their natural parametrization.Comment: 18 pages, 10 figures. Version 2 replaced the use of "nu" for the "growth exponent" by 1/d_H, where d_H is the Hausdorff dimension. Various minor errors were also correcte

    Pro/DESKTOP in Schools: A pilot research study

    Get PDF
    Following the launch and widespread dissemination of the CAD/CAM in Schools Initiative and ProlDESKTOP (hereafter PDT) software, DATA recognised that the changes that are being brought about in children's designing are sufficiently profound to deserve careful research. This project is a small-scale exploration of the impact of this CAD initiative on children's designing and on the standards of work that can be achieved. Its aim is not to produce answers to these difficult questions. Rather its purpose is to clarify the questions that might need to be asked in a full scale evaluation. Because of the timing of this project and the looming examination demands in Years II, 12 and 13, we were asked to focus on Years 9 and 10. This paper represents a brief synopsis of some of the major issues that emerged through the study
    corecore