4,678 research outputs found
The mid-infrared spectrum of the transiting exoplanet HD 209458b
We report the spectroscopic detection of mid-infrared emission from the
transiting exoplanet HD 209458b. Using archive data taken with the Spitzer/IRS
instrument, we have determined the spectrum of HD 209458b between 7.46 and
15.25 microns. We have used two independent methods to determine the planet
spectrum, one differential in wavelength and one absolute, and find the results
are in good agreement. Over much of this spectral range, the planet spectrum is
consistent with featureless thermal emission. Between 7.5 and 8.5 microns, we
find evidence for an unidentified spectral feature. If this spectral modulation
is due to absorption, it implies that the dayside vertical temperature profile
of the planetary atmosphere is not entirely isothermal. Using the IRS data, we
have determined the broad-band eclipse depth to be 0.00315 +/- 0.000315,
implying significant redistribution of heat from the dayside to the nightside.
This work required development of improved methods for Spitzer/IRS data
calibration that increase the achievable absolute calibration precision and
dynamic range for observations of bright point sources.Comment: 35 pages, 12 figures, revised version accepted by the Astrophysical
Journa
Stationarity of SLE
A new method to study a stopped hull of SLE(kappa,rho) is presented. In this
approach, the law of the conformal map associated to the hull is invariant
under a SLE induced flow. The full trace of a chordal SLE(kappa) can be studied
using this approach. Some example calculations are presented.Comment: 14 pages with 1 figur
The dimension of loop-erased random walk in 3D
We measure the fractal dimension of loop-erased random walk (LERW) in 3
dimensions, and estimate that it is 1.62400 +- 0.00005. LERW is closely related
to the uniform spanning tree and the abelian sandpile model. We simulated LERW
on both the cubic and face-centered cubic lattices; the corrections to scaling
are slightly smaller for the face-centered cubic lattice.Comment: 4 pages, 4 figures. v2 has more data, minor additional change
Quantitative estimates of discrete harmonic measures
A theorem of Bourgain states that the harmonic measure for a domain in
is supported on a set of Hausdorff dimension strictly less than
\cite{Bourgain}. We apply Bourgain's method to the discrete case, i.e., to the
distribution of the first entrance point of a random walk into a subset of , . By refining the argument, we prove that for all \b>0 there
exists \rho (d,\b)N(d,\b), any , and any | \{y\in\Z^d\colon \nu_{A,x}(y)
\geq n^{-\b} \}| \leq n^{\rho(d,\b)}, where denotes the
probability that is the first entrance point of the simple random walk
starting at into . Furthermore, must converge to as \b \to
\infty.Comment: 16 pages, 2 figures. Part (B) of the theorem is ne
Lifetimes, transition probabilities, and level energies in Fe I
We use time-resolved laser-induced fluorescence to measure the lifetime of 186 Fe levels with energies between 25 900 and 60 758 cm . Measured emission branching fractions for these levels yield transition probabilities for 1174 transitions in the range 225-2666 nm. We find another 640 Fe transition probabilities by interpolating level populations in the inductively coupled plasma spectral source. We demonstrate the reliability of the interpolation method by comparing our transition probabilities with absorption oscillator strengths measured by the Oxford group [Blackwell et al., Mon. Not. R. Astron. Soc. 201, 595-602 (1982)]. We derive precise Fe level energies to support the automated method that is used to identify transitions in our spectra
Limiting shapes for deterministic centrally seeded growth models
We study the rotor router model and two deterministic sandpile models. For
the rotor router model in , Levine and Peres proved that the
limiting shape of the growth cluster is a sphere. For the other two models,
only bounds in dimension 2 are known. A unified approach for these models with
a new parameter (the initial number of particles at each site), allows to
prove a number of new limiting shape results in any dimension .
For the rotor router model, the limiting shape is a sphere for all values of
. For one of the sandpile models, and (the maximal value), the
limiting shape is a cube. For both sandpile models, the limiting shape is a
sphere in the limit . Finally, we prove that the rotor router
shape contains a diamond.Comment: 18 pages, 3 figures, some errors corrected and more explanation
added, to appear in Journal of Statistical Physic
Field theory conjecture for loop-erased random walks
We give evidence that the functional renormalization group (FRG), developed
to study disordered systems, may provide a field theoretic description for the
loop-erased random walk (LERW), allowing to compute its fractal dimension in a
systematic expansion in epsilon=4-d. Up to two loop, the FRG agrees with
rigorous bounds, correctly reproduces the leading logarithmic corrections at
the upper critical dimension d=4, and compares well with numerical studies. We
obtain the universal subleading logarithmic correction in d=4, which can be
used as a further test of the conjecture.Comment: 5 page
Derivatives of spin dynamics simulations
We report analytical equations for the derivatives of spin dynamics
simulations with respect to pulse sequence and spin system parameters. The
methods described are significantly faster, more accurate and more reliable
than the finite difference approximations typically employed. The resulting
derivatives may be used in fitting, optimization, performance evaluation and
stability analysis of spin dynamics simulations and experiments.
Keywords: NMR, EPR, simulation, analytical derivatives, optimal control, spin
chemistry, radical pair.Comment: Accepted by The Journal of Chemical Physic
Probability distribution of the sizes of largest erased-loops in loop-erased random walks
We have studied the probability distribution of the perimeter and the area of
the k-th largest erased-loop in loop-erased random walks in two-dimensions for
k = 1 to 3. For a random walk of N steps, for large N, the average value of the
k-th largest perimeter and area scales as N^{5/8} and N respectively. The
behavior of the scaled distribution functions is determined for very large and
very small arguments. We have used exact enumeration for N <= 20 to determine
the probability that no loop of size greater than l (ell) is erased. We show
that correlations between loops have to be taken into account to describe the
average size of the k-th largest erased-loops. We propose a one-dimensional
Levy walk model which takes care of these correlations. The simulations of this
simpler model compare very well with the simulations of the original problem.Comment: 11 pages, 1 table, 10 included figures, revte
- …