69 research outputs found
Challenges of open innovation: the paradox of firm investment in open-source software
Open innovation is a powerful framework encompassing the generation, capture, and employment of intellectual property at the firm level. We identify three fundamental challenges for firms in applying the concept of open innovation: finding creative ways to exploit internal innovation, incorporating external innovation into internal development, and motivating outsiders to supply an ongoing stream of external innovations. This latter challenge involves a paradox, why would firms spend money on R&D efforts if the results of these efforts are available to rival firms? To explore these challenges, we examine the activity of firms in opensource software to support their innovation strategies. Firms involved in open-source software often make investments that will be shared with real and potential rivals. We identify four strategies firms employ – pooled R&D/product development, spinouts, selling complements and attracting donated complements – and discuss how they address the three key challenges of open innovation. We conclude with suggestions for how similar strategies may apply in other industries and offer some possible avenues for future research on open innovation
Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea)
International audienceRates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach
25 Years of Self-organized Criticality: Concepts and Controversies
Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attracted much comment, ranging from the very positive to the polemical. The other papers (Aschwanden et al. in Space Sci. Rev., 2014, this issue; McAteer et al. in Space Sci. Rev., 2015, this issue; Sharma et al. in Space Sci. Rev. 2015, in preparation) in this special issue showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Bak’s own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfeld’s original papers
Thrombospondin-1 as a Regulator of Corneal Inflammation and Lymphangiogenesis: Effects on Dry Eye Disease and Corneal Graft Immunology
Thrombospondin-1 (TSP-1) is a matricellular glycoprotein that belongs to a family of evolutionary highly conserved calcium-binding proteins consisting of 5 members (TSP-1-TSP-5). In the eye, TSP-1 is expressed by several ocular cell types and is also detectable in the aqueous humor and the vitreous body. So far, TSP-1 is one of the major activators of TGF beta, suggesting a strong influence on various important cellular functions and interactions such as differentiation, migration, and wound healing. TSP-1 is also a key endogenous inhibitor of hem- and lymphangiogenesis. Several lines of evidence indicate a crucial role of TSP-1 in maintaining the ocular immune and angiogenic privilege, for example, by regulating T lymphocytes and the tolerance-promoting properties of ocular antigen-presenting cells. This review discusses the role of TSP-1 in dry eye disease and corneal graft rejection through its effects on hem- and lymphangiogenesis, as well as on the underlying immune responses. Recent work will be reviewed showing by which molecular mechanism TSP-1 modulates inflammatory processes during ocular diseases. This opens potential new treatment avenues in inflammatory and (lymph)angiogenic ocular diseases
- …