11,515 research outputs found
Probing Non-Abelian Statistics in nu=12/5 Quantum Hall State
The tunneling current and shot noise of the current between two Fractional
Quantum Hall (FQH) edges in the FQH state in electronic
Mach-Zehnder interferometer are studied. It is shown that the tunneling current
and shot noise can be used to probe the existence of parafermion
statistics in the FQH state. More specifically, the dependence of
the current on the Aharonov-Bohm flux in the Read-Rezayi state is asymmetric
under the change of the sign of the applied voltage. This property is absent in
the Abelian Laughlin states. Moreover the Fano factor can exceed 12.7 electron
charges in the FQH state . This number well exceeds the maximum
possible Fano factor in all Laughlin states and the Moore-Read
state which was shown previously to be and respectively.Comment: 10 pages, 6 figure
Well-Posedness And Accuracy Of The Ensemble Kalman Filter In Discrete And Continuous Time
The ensemble Kalman filter (EnKF) is a method for combining a dynamical model
with data in a sequential fashion. Despite its widespread use, there has been
little analysis of its theoretical properties. Many of the algorithmic
innovations associated with the filter, which are required to make a useable
algorithm in practice, are derived in an ad hoc fashion. The aim of this paper
is to initiate the development of a systematic analysis of the EnKF, in
particular to do so in the small ensemble size limit. The perspective is to
view the method as a state estimator, and not as an algorithm which
approximates the true filtering distribution. The perturbed observation version
of the algorithm is studied, without and with variance inflation. Without
variance inflation well-posedness of the filter is established; with variance
inflation accuracy of the filter, with resepct to the true signal underlying
the data, is established. The algorithm is considered in discrete time, and
also for a continuous time limit arising when observations are frequent and
subject to large noise. The underlying dynamical model, and assumptions about
it, is sufficiently general to include the Lorenz '63 and '96 models, together
with the incompressible Navier-Stokes equation on a two-dimensional torus. The
analysis is limited to the case of complete observation of the signal with
additive white noise. Numerical results are presented for the Navier-Stokes
equation on a two-dimensional torus for both complete and partial observations
of the signal with additive white noise
Ferroelectricity from spin supercurrents in LiCuVO4
We have studied the magnetic structure of the ferroelectric frustrated
spin-1/2 chain material LiCuVO4 in applied electric and magnetic fields using
polarized neutrons. A symmetry and mean-field analysis of the data rules out
the presence of static Dzyaloshinskii-Moriya interaction, while exchange
striction is shown to be negligible by our specific-heat measurements. The
experimentally observed magnetoelectric coupling is in excellent agreement with
the predictions of a purely electronic mechanism based on spin supercurrents.Comment: 4 pages, 3 figures, final versio
Field Induced Magnetic Ordering and Single-ion Anisotropy in the Quasi-1D Haldane Chain Compound SrNi2V2O8: A Single Crystal investigation
Field-induced magnetic ordering in the Haldane chain compound
SrNiVO and effect of anisotropy have been investigated using
single crystals. Static susceptibility, inelastic neutron scattering,
high-field magnetization, and low temperature heat-capacity studies confirm a
non-magnetic spin-singlet ground state and a gap between the singlet ground
state and triplet excited states. The intra-chain exchange interaction is
estimated to be 0.1 meV. Splitting of the dispersions into two
modes with minimum energies 1.57 and 2.58 meV confirms the existence of
single-ion anisotropy . The value of {\it D} is estimated to be
meV and the easy axis is found to be along the
crystallographic {\it c}-axis. Field-induced magnetic ordering has been found
with two critical fields [0.2 T and
0.5 T at 4.2 K]. Field-induced
three-dimensional magnetic ordering above the critical fields is evident from
the heat-capacity, susceptibility, and high-field magnetization study. The
Phase diagram in the {\it H-T} plane has been obtained from the high-field
magnetization. The observed results are discussed in the light of theoretical
predictions as well as earlier experimental reports on Haldane chain compounds
The golden circle: A way of arguing and acting about technology in the London ambulance service
This paper analyses the way in which the London Ambulance Service recovered from the events of October 1992, when it implemented a computer-aided despatch system (LASCAD) that remained in service for less than two weeks. It examines the enactment of a programme of long-term organizational change, focusing on the implementation of an alternative computer system in 1996. The analysis in this paper is informed by actor-network theory, both by an early statement of this approach developed by Callon in the sociology of translation, and also by concepts and ideas from Latour’s more recent restatement of his own position. The paper examines how alternative interests emerged and were stabilized over time, in a way of arguing and acting among key players in the change programme, christened the Golden Circle. The story traces four years in the history of the London Ambulance Service, from the aftermath of October 1992 through the birth of the Golden Circle to the achievement of National Health Service (NHS) trust status. LASCAD was the beginning of the story, this is the middle, an end lies in the future, when the remaining elements of the change programme are enacted beyond the Golden Circle
Natural orbits of atomic Cooper pairs in a nonuniform Fermi gas
We examine the basic mode structure of atomic Cooper pairs in an
inhomogeneous Fermi gas. Based on the properties of Bogoliubov quasi-particle
vacuum, the single particle density matrix and the anomalous density matrix
share the same set of eigenfunctions. These eigenfunctions correspond to
natural pairing orbits associated with the BCS ground state. We investigate
these orbits for a Fermi gas in a spherical harmonic trap, and construct the
wave function of a Cooper pair in the form of Schmidt decomposition. The issue
of spatial quantum entanglement between constituent atoms in a pair is
addressed.Comment: 14 pages, 4 figures, submitted to Phys. Rev.
Knowledge, Food and Place: a way of producing a way of knowing
The article examines the dynamics of knowledge in the valorisation of local food, drawing on the results from the CORASON project (A cognitive approach to rural sustainable development: the dynamics of expert and lay knowledge), funded by the EU under its Framework Programme 6. It is based on the analysis of several in-depth case studies on food relocalisation carried out in 10 European countries
Evidence of a bond-nematic phase in LiCuVO4
Polarized and unpolarized neutron scattering experiments on the frustrated
ferromagnetic spin-1/2 chain LiCuVO4 show that the phase transition at HQ of 8
Tesla is driven by quadrupolar fluctuations and that dipolar correlations are
short-range with moments parallel to the applied magnetic field in the
high-field phase. Heat-capacity measurements evidence a phase transition into
this high-field phase, with an anomaly clearly different from that at low
magnetic fields. Our experimental data are consistent with a picture where the
ground state above HQ has a next-nearest neighbour bond-nematic order along the
chains with a fluid-like coherence between weakly coupled chains.Comment: 5 pages, 4 figures. To appear in Phys. Rev. Let
Dynamic and Energetic Stabilization of Persistent Currents in Bose-Einstein Condensates
We study conditions under which vortices in a highly oblate harmonically
trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a
blue-detuned Gaussian laser beam, with particular emphasis on the potentially
destabilizing effects of laser beam positioning within the BEC. Our approach
involves theoretical and numerical exploration of dynamically and energetically
stable pinning of vortices with winding number up to , in correspondence
with experimental observations. Stable pinning is quantified theoretically via
Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct
numerical simulations for a range of conditions similar to those of
experimental observations. The theoretical and numerical results indicate that
the pinned winding number, or equivalently the winding number of the superfluid
current about the laser beam, decays as a laser beam of fixed intensity moves
away from the BEC center. Our theoretical analysis helps explain previous
experimental observations, and helps define limits of stable vortex pinning for
future experiments involving vortex manipulation by laser beams.Comment: 8 pages 5 figure
- …