31 research outputs found

    Histological regression of squamous esophageal carcinoma assessed by percentage of residual viable cells after neoadjuvant chemoradiation is an important prognostic factor

    Get PDF
    Background: Whether the TNM staging system is applicable after neoadjuvant chemoradiation in esophageal cancer is controversial. The aim of this study was to evaluate the prognostic value of histopathological regression of the primary tumor in postchemoradiated patients. Materials and Methods: The pretherapeutic and pathological ypTNM stages of patients who have had neoadjuvant chemoradiation followed by esophagectomy were analyzed. The percentage of residual viable cells of the primary tumor (ypV) and other clinicopathological factors were tested for their prognostic value. Results: Of 175 recruited patients, 55 (31.4%) achieved pathological complete response. The median survival of these 55 patients was significantly longer than those with other disease stages (124.8 vs 21.1 months) (P <.001). Gender, ypT, ypN, ypTNM, and ypV stage were significant prognostic factors in univariate analysis. In patients without nodal metastases, the median survival in patients with residual viable cells in the primary tumor (ypV?) was 24.6 months, compared with that of 124.8 months in those with no viable cells (ypV0) (P =.043). In those who had nodal metastases, the median survival of patients with ypV0 and ypV? were 21.2 months and 17.4 months respectively (P =.37). Cox regression analysis showed that male gender, high percentage of residual viable cells (ypV), and positive nodal status (ypN1) were independent predictors of poor prognosis. Conclusions: In patients who underwent neoadjuvant chemoradiation therapy, histopathological regression of the primary tumor indicated by percentage of residual viable cells is an important prognostic factor in addition to nodal status and gender. © The Author(s) 2010.published_or_final_versionSpringer Open Choice, 01 Dec 201

    Unsteady flow dynamics and acoustics of two-outlet centrifugal fan design

    Get PDF
    2011-2012 > Academic research: refereed > Chapter in an edited book (author)Version of RecordPublishe

    Targeting VEGFR-1 and VEGFR2-expressing non-tumor cells is essential for esophageal cancer therapy

    Get PDF
    Increasing appreciation of tumor heterogeneity and the tumor-host interaction has stimulated interest in developing novel therapies that target both tumor cells and tumor microenvironment. Bone marrow derived cells (BMDCs) constitute important components of the tumor microenvironment. In this study, we aim to investigate the significance of VEGFR1- and VEGFR2-expressing non-tumor cells, including BMDCs, in esophageal cancer (EC) progression and in VEGFR1/VEGFR2-targeted therapies. Here we report that VEGFR1 or VEGFR2 blockade can significantly attenuate VEGF-induced Src and Erk signaling, as well as the proliferation and migration of VEGFR1+ and VEGFR2+ bone marrow cells and their pro-invasive effect on cancer cells. Importantly, our in vivo data show for the first time that systemic blockade of VEGFR1+ or VEGFR2+ non-tumor cells with neutralizing antibodies is sufficient to significantly suppress esophageal tumor growth, angiogenesis and metastasis in mice. Moreover, our tissue microarray study of human EC clinical specimens showed the clinicopathological significance of VEGFR1 and VEGFR2 in EC, which suggest that anti-VEGFR1/VEGFR2 therapies may be particularly beneficial for patients with aggressive EC. In conclusion, this study demonstrates the important contributions of VEGFR1+ and VEGFR2+ non-tumor cells in esophageal cancer progression, and substantiates the validity of these receptors as therapeutic targets for this deadly disease.published_or_final_versio

    Gene Expression Profiling Identified High-mobility Group AT-hook (HMGA2) as Being Frequently Upregulated in Esophageal Squamous Cell Carcinoma

    Get PDF
    Background: Esophageal cancer is one of the most deadly malignancies worldwide and esophageal squamous cell carcinoma (ESCC) is the most frequent type. Methods: We identified up-regulated genes from gene expression profiles of HKESC-4 cell line, its parental tumor tissues, non-tumoral esophageal epithelia and lymph nodes with metastatic carcinoma using Human Genome U133 Plus 2.0 microarray. Results: Four genes [High-mobility group AT-hook 2 (HMGA2), paternally expressed 10 (PEG10), SH3 and multiple ankyrin repeat domains 2 (SHANK2) and WNT1 inducible signaling pathway protein 3 (WISP3)] were selected for further validation with real-time quantitative polymerase chain reaction (qPCR) in a panel of ESCC cell lines and clinical specimens. HMGA2 was found to be overexpressed in the panel of ESCC cell lines tested. By using immunohistochemistry, HMGA2 was found to be up-regulated in 70% of ESCC tissues (21 out of 30 cases). Conclusion: This study demonstrates successful use of gene microarray to identify and reveal HMGA2 as a novel and consistently overexpressed gene in ESCC cell lines and clinical samples.published_or_final_versio

    Nuclear Localization of DNAJB6 is Associated with Survival of Patients with Esophageal Cancer and Reduces AKT Signaling and Proliferation of Cancer Cells

    Get PDF
    Abstract BACKGROUND & AIMS: The DnaJ (Hsp40) homolog, subfamily B, member 6 (DNAJB6) is part of a family of proteins that regulate chaperone activities. One of its isoforms, DNAJB6a, contains a nuclear localization signal and regulates β-catenin signaling during breast cancer development. We investigated the role of DNAJB6 in pathogenesis of esophageal squamous cell carcinoma (ESCC). METHODS: We performed immunohistochemical analyses of primary ESCC samples and lymph node metastases from a cohort of 160 patients, who underwent esophagectomy with no pre-operative chemo-radiotherapy at Hong Kong Queen Mary Hospital. Data were collected on patient outcomes over a median time of 12.1±2.9 months. Retrospective survival association analyses were performed. Wild-type and mutant forms of DNAJB6a were overexpressed in cancer cell lines (KYSE510, KYSE 30TSI, KYSE140, and KYSE70TS), which were analyzed in proliferation and immunoblot assays, or injected subcutaneously into nude mice. Levels of DNAJB6 were knocked down in ESCC cell lines (KYSE450 and T.Tn), immortalized normal esophageal epithelial cell lines (NE3 and NE083), and other cells with short hairpin RNAs or by genome engineering. Bimolecular fluorescence complementation was used to study interactions between proteins in living cells. RESULTS: In primary ESCC samples, patients whose tumors had high nuclear levels of DNAJB6 had longer overall survival times (19.2±1.8 months; 95% confidence interval [CI], 15.6-22.8 months) than patients whose tumors had low nuclear levels of DNAJB6 (12.6±1.4 months; 95% CI, 9.8-15.4 months; P=.004, by log rank test). Based on Cox regression analysis, patients whose tumors had high nuclear levels of DNAJB6 had a lower risk of death than those with low levels (hazard ratio=0.562; 95% CI, 0.379-0.834; P=.004). Based on log rank analysis and Cox regression analysis, the combination of nuclear level of DNAJB6 and the presence of lymph node metastases at diagnosis could be used to stratify patients into groups with good or bad outcomes (P<.0005 for both analyses). There was a negative association between the nuclear level of DNAJB6 and the presence of lymph node metastases (P=.022; Pearson χ2 test). Cancer cell lines that overexpressed DNAJB6a formed tumors more slowly in nude mice than control cells or cells that expressed a mutant form of DNAJB6a that did not localize to the nucleus. DNAJB6 knockdown in cancer cell lines promoted their growth as xenograft tumors in mice. A motif of histidine, proline, and aspartic acid (HPD) in the J domain of DNAJB6a was required for its tumor suppressive effects and signaling via AKT1. Loss of DNAJB6a resulted in upregulation of AKT signaling in cancer cell lines and immortalized esophageal epithelial cells. Expression of a constitutively active form of AKT1 restored proliferation to tumor cells that overexpressed DNAJB6a, and DNAJB6a formed a complex with AKT1 in living cells. Expression of DNAJB6a reduced the sensitivity of ESCC to AKT inhibitors; the expression level of DNAJB6a affected AKT signaling in multiple cancer cell lines. CONCLUSIONS: Nuclear localization of DNAJB6 is associated with longer survival times of patients with ESCC. DNAJB6a reduces AKT signaling, and DNAJB6 expression in cancer cells reduces their proliferation and growth of xenograft tumors in mice. DNAJB6a might be developed as biomarker for progression of ESCC.postprin

    Whole-exome sequencing reveals critical genes underlying metastasis in oesophageal squamous cell carcinoma

    Get PDF
    Oesophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers, owing to a high frequency of metastasis. However, little is known about the genomic landscape of metastatic ESCC. To identify the genetic alterations that underlie ESCC metastasis, whole-exome sequencing was performed for 41 primary tumours and 15 lymph nodes (LNs) with metastatic ESCCs. Eleven cases included matched primary tumours, synchronous LN metastases, and non-neoplastic mucosa. Approximately 50–76% of the mutations identified in primary tumours appeared in the synchronous LN metastases. Metastatic ESCCs harbour frequent mutations of TP53, KMT2D, ZNF750, and IRF5. Importantly, ZNF750 was recurrently mutated in metastatic ESCC. Combined analysis from current and previous genomic ESCC studies indicated more frequent ZNF750 mutation in diagnosed cases with LN metastasis than in those without metastasis (14% versus 3.4%, n = 629, P = 1.78 × 10–5). The Cancer Genome Atlas data further showed that ZNF750 genetic alterations were associated with early disease relapse. Previous ESCC studies have demonstrated that ZNF750 knockdown strongly promotes proliferation, migration, and invasion. Collectively, these results suggest a role for ZNF750 as a metastasis suppressor. TP53 is highly mutated in ESCC, and missense mutations are associated with poor overall survival, independently of pathological stage, suggesting that these missense mutations have important functional impacts on tumour progression, and are thus likely to be gain-of-function (GOF) mutations. Additionally, mutations of epigenetic regulators, including KMT2D, TET2, and KAT2A, and chromosomal 6p22 and 11q23 deletions of histone variants, which are important for nucleosome assembly, were detected in 80% of LN metastases. Our study highlights the important role of critical genetic events including ZNF750 mutations, TP53 putative GOF mutations and nucleosome disorganization caused by genetic lesions seen with ESCC metastasis.No Full Tex

    Confined catalytic oxidation of volatile organic compounds by transition metal containing zeolites and ionizer

    No full text
    Ion exchange of zeolite, NaX, at different concentrations of cobalt (11) solutions can play an important role in gaseous contaminant destruction. The performance of the resulting zeolites on acetone removal when working together with an ionizer was evaluated. It was found that the cobalt containing zeolites worked better than the original NaX in our experiments. Catalytic oxidation mechanism of the volatile organic compounds (VOCs) inside the pores of zeolite was proposed. It is believed that the octahedral coordinated cobalt (11) complexes shift to tetrahedral coordination upon entering into the pores of NaX, which then work with the reactive oxygen species released from the ionizer and catalyze the oxidation reactions of the adsorbed VOCs. The results have shown potential applications in odor removal and indoor air quality control. (C) 2003 Elsevier Ltd. All rights reserved

    The use of zeolite and oxidant generating devices in air cleaning

    No full text
    This paper presents the effects of combining a zeolite filter with an oxidant-generating device to remove Volatile Organic Compounds (VOCs) from air. Two types of synthetic zeolites were tested. The sources of VOCs used in the tests were acetone and dried shark fins. Dried shark fins are commonly used in Chinese cooking and they emit amine related compounds with a notorious smell. Experiments were conducted under various conditions in an experimental chamber. Results indicate that combining the zeolite filter with an ozone generator or an ioniser resulted in a faster rate of depletion of VOCs than using either device alone. The effectiveness of the VOC removal is related to the pore size of the zeolite. Zeolite with a larger pore size is capable of adsorbing both the oxidants and the pollutant molecules into the same cavity, which allows catalytic oxidation reaction to occur inside the confined space of the zeolite
    corecore