934 research outputs found

    Orion Capsule Handling Qualities for Atmospheric Entry

    Get PDF
    Two piloted simulations were conducted at NASA's Johnson Space Center using the Cooper-Harper scale to study the handling qualities of the Orion Command Module capsule during atmospheric entry flight. The simulations were conducted using high fidelity 6-DOF simulators for Lunar Return Skip Entry and International Space Station Return Direct Entry flight using bank angle steering commands generated by either the Primary (PredGuid) or Backup (PLM) guidance algorithms. For both evaluations, manual control of bank angle began after descending through Entry Interface into the atmosphere until drogue chutes deployment. Pilots were able to use defined bank management and reversal criteria to accurately track the bank angle commands, and stay within flight performance metrics of landing accuracy, g-loads, and propellant consumption, suggesting that the pilotability of Orion under manual control is both achievable and provides adequate trajectory performance with acceptable levels of pilot effort. Another significant result of these analyses is the applicability of flying a complex entry task under high speed entry flight conditions relevant to the next generation Multi Purpose Crew Vehicle return from Mars and Near Earth Objects

    KELT-8b: A highly inflated transiting hot Jupiter and a new technique for extracting high-precision radial velocities from noisy spectra

    Get PDF
    We announce the discovery of a highly inflated transiting hot Jupiter discovered by the KELT-North survey. A global analysis including constraints from isochrones indicates that the V = 10.8 host star (HD 343246) is a mildly evolved, G dwarf with Teff=575455+54T_{\rm eff} = 5754_{-55}^{+54} K, logg=4.0780.054+0.049\log{g} = 4.078_{-0.054}^{+0.049}, [Fe/H]=0.272±0.038[Fe/H] = 0.272\pm0.038, an inferred mass M=1.2110.066+0.078M_{*}=1.211_{-0.066}^{+0.078} M_{\odot}, and radius R=1.670.12+0.14R_{*}=1.67_{-0.12}^{+0.14} R_{\odot}. The planetary companion has mass MP=0.8670.061+0.065M_P = 0.867_{-0.061}^{+0.065} MJM_{J}, radius RP=1.860.16+0.18R_P = 1.86_{-0.16}^{+0.18} RJR_{J}, surface gravity loggP=2.7930.075+0.072\log{g_{P}} = 2.793_{-0.075}^{+0.072}, and density ρP=0.1670.038+0.047\rho_P = 0.167_{-0.038}^{+0.047} g cm3^{-3}. The planet is on a roughly circular orbit with semimajor axis a=0.045710.00084+0.00096a = 0.04571_{-0.00084}^{+0.00096} AU and eccentricity e=0.0350.025+0.050e = 0.035_{-0.025}^{+0.050}. The best-fit linear ephemeris is T0=2456883.4803±0.0007T_0 = 2456883.4803 \pm 0.0007 BJDTDB_{\rm TDB} and P=3.24406±0.00016P = 3.24406 \pm 0.00016 days. This planet is one of the most inflated of all known transiting exoplanets, making it one of the few members of a class of extremely low density, highly-irradiated gas giants. The low stellar logg\log{g} and large implied radius are supported by stellar density constraints from follow-up light curves, plus an evolutionary and space motion analysis. We also develop a new technique to extract high precision radial velocities from noisy spectra that reduces the observing time needed to confirm transiting planet candidates. This planet boasts deep transits of a bright star, a large inferred atmospheric scale height, and a high equilibrium temperature of Teq=167555+61T_{eq}=1675^{+61}_{-55} K, assuming zero albedo and perfect heat redistribution, making it one of the best targets for future atmospheric characterization studies.Comment: Submitted to ApJ, feedback is welcom

    Searching for transits in the Wide Field Camera Transit Survey with difference-imaging light curves

    Get PDF
    The Wide Field Camera Transit Survey is a pioneer program aiming at for searching extra-solar planets in the near-infrared. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. We produce an alternative set of light curves using the difference-imaging method for the most complete field in the survey and carry out a quantitative comparison between the photometric precision achieved with both methods. The results show that differencephotometry light curves present an important improvement for stars with J > 16. We report an implementation on the box-fitting transit detection algorithm, which performs a trapezoid-fit to the folded light curve, providing more accurate results than the boxfitting model. We describe and optimize a set of selection criteria to search for transit candidates, including the V-shape parameter calculated by our detection algorithm. The optimized selection criteria are applied to the aperture photometry and difference-imaging light curves, resulting in the automatic detection of the best 200 transit candidates from a sample of ~475 000 sources. We carry out a detailed analysis in the 18 best detections and classify them as transiting planet and eclipsing binary candidates. We present one planet candidate orbiting a late G-type star. No planet candidate around M-stars has been found, confirming the null detection hypothesis and upper limits on the occurrence rate of short-period giant planets around M-dwarfs presented in a prior study. We extend the search for transiting planets to stars with J ≤ 18, which enables us to set a stricter upper limit of 1.1%. Furthermore, we present the detection of five faint extremely-short period eclipsing binaries and three M-dwarf/M-dwarf binary candidates. The detections demonstrate the benefits of using the difference-imaging light curves, especially when going to fainter magnitudes.Peer reviewe

    The Hubble Space Telescope Wide Field Camera 3 Early Release Science data: Panchromatic Faint Object Counts for 0.2-2 microns wavelength

    Get PDF
    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098M (Ys), F125W (J), and F160W (H) with 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50 square arcmin at 0.2-1.7 {\mu}m in wavelength at 0.07-0.15" FWHM resolution and 0.090" Multidrizzled pixels to depths of AB\simeq 26.0-27.0 mag (5-{\sigma}) for point sources, and AB\simeq 25.5-26.5 mag for compact galaxies. In this paper, we describe: a) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics; b) the procedure of generating object catalogs across the 10 different ERS filters, and the specific star-galaxy separation techniques used; and c) the reliability and completeness of the object catalogs from the WFC3 ERS mosaics. The excellent 0.07-0.15" FWHM resolution of HST/WFC3 and ACS makes star- galaxy separation straightforward over a factor of 10 in wavelength to AB\simeq 25-26 mag from the UV to the near-IR, respectively.Comment: 51 pages, 71 figures Accepted to ApJS 2011.01.2

    A Search for Neutrinos from the Solar hep Reaction and the Diffuse Supernova Neutrino Background with the Sudbury Neutrino Observatory

    Get PDF
    A search has been made for neutrinos from the hep reaction in the Sun and from the diffus

    Photometric transit search for planets around cool stars from the western Italian Alps: A pilot study

    Full text link
    [ABRIDGED] In this study, we set out to a) demonstrate the sensitivity to <4 R_E transiting planets with periods of a few days around our program stars, and b) improve our knowledge of some astrophysical properties(e.g., activity, rotation) of our targets by combining spectroscopic information and our differential photometric measurements. We achieve a typical nightly RMS photometric precision of ~5 mmag, with little or no dependence on the instrumentation used or on the details of the adopted methods for differential photometry. The presence of correlated (red) noise in our data degrades the precision by a factor ~1.3 with respect to a pure white noise regime. Based on a detailed stellar variability analysis, a) we detected no transit-like events; b) we determined photometric rotation periods of ~0.47 days and ~0.22 days for LHS 3445 and GJ 1167A, respectively; c) these values agree with the large projected rotational velocities (~25 km/s and ~33 km/s, respectively) inferred for both stars based on the analysis of archival spectra; d) the estimated inclinations of the stellar rotation axes for LHS 3445 and GJ 1167A are consistent with those derived using a simple spot model; e) short-term, low-amplitude flaring events were recorded for LHS 3445 and LHS 2686. Finally, based on simulations of transit signals of given period and amplitude injected in the actual (nightly reduced) photometric data for our sample, we derive a relationship between transit detection probability and phase coverage. We find that, using the BLS search algorithm, even when phase coverage approaches 100%, there is a limit to the detection probability of ~90%. Around program stars with phase coverage >50% we would have had >80% chances of detecting planets with P0.5%, corresponding to minimum detectable radii in the range 1.0-2.2 R_E. [ABRIDGED]Comment: 23 pages, 17 figures, 7 tables. Accepted for publication in MNRA

    Low Multiplicity Burst Search at the Sudbury Neutrino Observatory

    Get PDF
    Results are reported from a search for low-multiplicity neutrino bursts in the Sudbury Neutrino Observatory (SNO). Such bursts could indicate detection of a nearby core-collapse supernova explosion. The data were taken from Phase I (November 1999 - May 2001), when the detector was filled with heavy water, and Phase II (July 2001 - August 2003), when NaCl was added to the target. The search was a blind analysis in which the potential backgrounds were estimated and analysis cuts were developed to eliminate such backgrounds with 90% confidence before the data were examined. The search maintained a greater than 50% detection probability for standard supernovae occurring at a distance of up to 60 kpc for Phase I and up to 70 kpc for Phase II. No low-multiplicity bursts were observed during the data-taking period.Comment: 11 pages, 4 figures, submitted to Ap
    corecore