140 research outputs found

    Behavioural Characteristics of Children with Developmental Disorder Risks

    Get PDF
    The article is devoted to the study of the temperament and behaviour of children with developmental disorder risks. Early age is most significant in terms of early identifying deviant development markers for implementing effective programmes for early intervention. The article deals with the peculiarities of using the Infant Behaviour Questionnaire - Revised (IBQ-R) and its application in scientific research; the results of domestic and foreign research into temperament as a marker/predictor of deviant behaviour are presented. The paper describes the results of a pilot study of differences in behaviour in a sample of 49 children aged 5.6 months. The research involved two groups of test children, a reference group (typically developing children) and the children of developmental risk groups (which included prematurity, family risk of autism spectrum disorders (ASD)/attention deficit and hyperactivity disorder (ADHD), paediatric arterial ischemic stroke). The significant impact of developmental disorder risks on the Perceptual Sensitivity Scale (IBQ-R) as well as the effect of sexand risks on the Approach, Vocal Reactivity (IBQ-R) scale were discovered. There are suggestions that prematurity may have a negative impact on the development of temperament in children aged 6 months. However, in comparison with such factors as the genetic predisposition to atypical development or local brain damage due to paediatric arterial ischemic stroke, prematurity (excluding extremely premature) probably has less influence on the development of temperament and behavioural characteristics. There is a significant heterotypic continuity of individual differences in temperament indicators at an early age, which highlights the need for further research into the issue and the formation of large cohorts of children. Keywords: deviant development markers, behaviour, IBQ-R questionnaire

    Developmental psychology: Parent responsiveness and its role in neurocognitive and socioemotional development of one-year-old preterm infants

    Full text link
    Background. It has been demonstrated that preterm birth negatively affects the neurocognitive and socioemotional development of a child. It is therefore important to identify the factors that can decrease potential risks for atypical development in preterm infants. The social environment which surrounds a child is considered to be one such factor. We hypothesize that parent responsiveness positively influences the development of a preterm child. Objective. The purpose of this research is to reveal differences in the development of two one-year-old preterm children whose parents have exhibited opposite types of parent responsiveness. Design. Based on the analysis of video recordings of child-parent interactions, we identified two children whose parents registered opposite patterns of responsiveness. Parent responsiveness was measured based on Parent Responsiveness Markers Protocol methodology. The Bayley-III was used to assess the children's cognitive and socioemotional development. Results. We identified that the preterm child whose parent showed a high level of parental responsiveness had normative levels of neurocognitive development, socioemotional skills and adaptive behavior. The preterm child, whose parent showed a low level of parental responsiveness, scored lower on the Bayley-III. Conclusion. Preterm birth not only affects infant development, but also has a psychological impact on parents, evoking fear and anxiety for their child. This affects parental behavior and their responsiveness towards their child. This study showed that parent responsiveness has a positive effect on the neurocognitive and socioemotional development of a preterm child. Further research should focus on assessing the role of parent responsiveness in child development using a larger sample. Β© Lomonosov Moscow State University, 2019. Russian Psychological Society, 2019.19-513-92001\19The research was supported by the grant of the Russian Science Foundation RFBR β„– 19-513-92001\19

    Via Hexagons to Squares in Ferrofluids: Experiments on Hysteretic Surface Transformations under Variation of the Normal Magnetic Field

    Full text link
    We report on different surface patterns on magnetic liquids following the Rosensweig instability. We compare the bifurcation from the flat surface to a hexagonal array of spikes with the transition to squares at higher fields. From a radioscopic mapping of the surface topography we extract amplitudes and wavelengths. For the hexagon--square transition, which is complex because of coexisting domains, we tailor a set of order parameters like peak--to--peak distance, circularity, angular correlation function and pattern specific amplitudes from Fourier space. These measures enable us to quantify the smooth hysteretic transition. Voronoi diagrams indicate a pinning of the domains. Thus the smoothness of the transition is roughness on a small scale.Comment: 17 pages, 14 figure

    Conformation of gem-diphenyl group in six-membered cyclic ethers of acids of sulfur, selenium, and arsenic

    Get PDF
    1. The sulfate, selenite, chloroarsenite, and bromoarsenite of 2,2-diphenyl-1,3-propanediol have been synthesized. 2. In the molecules of cyclic esters based on 2,2-diphenyl-l,3-propanediol, in the dissolved state, equivalent rotation of the phenyl groups relative to the ring symmetry plane is realized. Β© 1980 Plenum Publishing Corporation

    ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² пСрСносимых капСль элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ модСлирования ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ

    Get PDF
    The nature of the molten electrode metal melting and transfer is the main process parameter of manual metal arc welding (MMA) with coated electrodes. It significantly affects the efficiency of the welding process. For this reason the relevant task is to identify the parameters of the transferred molten electrode metal drops and their further transfer into the weld pool with maximum accuracy. The aim of the given paper is to develop a method and visual representation of the form and the geometrics (volume, area, mass) of a molten electrode metal drop.We have developed the method of simulation modeling and visualization for molten electrode metal drops transfer and their parameters. It allows obtaining highly reliable input data to be used for developing and verification of mathematical models for the thermal fields distribution along the welded item surface. The algorithm is realized as the calculation programs for specifying the molten metal drop parameters and means of its geometrics and space form visualization.We used this method to specify a number of molten electrode metal drop parameters: volume, mass, center-of-gravity position, surface area.We have established that it is possible to conduct the measurements with maximumThe suggested method significantly decreases the labor intensity of experimental studies aimed at specifying the size of electrode metal drops in comparison to the standard methods. When we know the size of the drops under certain welding conditions we can control the drop transfer process, i. e. reduce the heat input into the welded item and produce weld joints with the tailored performance characteristics.ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ тСхнологичСским ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ процСсса Ρ€ΡƒΡ‡Π½ΠΎΠΉ Π΄ΡƒΠ³ΠΎΠ²ΠΎΠΉ сварки, ΠΏΠΎΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΌ элСктродами, сущСствСнно Π²Π»ΠΈΡΡŽΡ‰ΠΈΠΌ Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ протСкания, являСтся Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ плавлСния ΠΈ пСрСноса расплавлСнного элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π°. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ являСтся вопрос максимально Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ опрСдСлСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² пСрСносимых капСль расплавлСнного элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΈ ΠΈΡ… ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Π² ΡΠ²Π°Ρ€ΠΎΡ‡Π½ΡƒΡŽ Π²Π°Π½Π½Ρƒ. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ прСдставлСния Ρ„ΠΎΡ€ΠΌΡ‹ ΠΈ гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² (ΠΎΠ±ΡŠΡ‘ΠΌ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ, масса) ΠΊΠ°ΠΏΠ»ΠΈ расплавлСнного элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π°.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ модСлирования ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ пСрСноса капСль расплавлСнного элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΈ ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π²Ρ…ΠΎΠ΄Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ с высокой ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ достовСрности для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ матСматичСских ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ распрСдСлСния Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ ΠΏΠΎ повСрхности свариваСмого издСлия ΠΈ Π΅Ρ‘ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ. Алгоритм Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ Π² Π²ΠΈΠ΄Π΅ расчётных ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ для опрСдСлСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΊΠ°ΠΏΠ»ΠΈ расплавлСнного ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΈ срСдств Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ прСдставлСния Π΅Ρ‘ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΈ пространствСнной Ρ„ΠΎΡ€ΠΌΡ‹. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½ ряд ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² капСль расплавлСнного элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π°: ΠΎΠ±ΡŠΡ‘ΠΌ, масса, ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ†Π΅Π½Ρ‚Ρ€Π° масс, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности.УстановлСно, Ρ‡Ρ‚ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ с максимальной Π΄ΠΎΡΡ‚ΠΎΠ²Π΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ измСрСния, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ число измСряСмых ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ наглядно ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ происходящиС процСссы.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠΏΡ€ΠΎΡ‰Π°Π΅Ρ‚ Ρ‚Ρ€ΡƒΠ΄ΠΎΡ‘ΠΌΠΊΠΎΡΡ‚ΡŒ провСдСния ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° капСль элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π° Π² сравнСнии со стандартными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. Зная Ρ€Π°Π·ΠΌΠ΅Ρ€ капСль ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… сварки, ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΏΡ€Π°Π²Π»ΡΡ‚ΡŒ процСссом каплСпСрСноса, Ρ‚. Π΅. ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² свариваСмоС ΠΈΠ·Π΄Π΅Π»ΠΈΠ΅ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ сварныС соСдинСния с Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌΠΈ эксплуатационными свойствами

    Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° конструкции ΠΈΡΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ оборудования, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰Π΅Π³ΠΎ процСсс Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ капСль ΠΌΠΈΠΊΡ€ΠΎ- ΠΈ Π½Π°Π½ΠΎΠ΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°

    Get PDF
    Modeling of velocities and temperatures processes distribution in the plasma-forming channel determining the design features and optimal parameters of the plasma torch nozzle is one of promising directions in development of plasma technologies. The aim of this work was to simulate the processes of velocities and temperature distribution in the plasma-forming channel and to determine the design features and optimal geometric parameters of the plasmatron nozzle Β which Β ensures Β the Β formation Β of Β necessary Β direction Β of Β plasma Β flows for generation of surface waves on the surface of a liquid metal droplet under the influence of the investigated instabilities.One of the main tasks is to consider the process of plasma jet formation and the flow of electric arc plasma. For obtaining small-sized particles one of the main parameters is the plasma flow Β velocity. Β It Β is necessary that the plasma outflow velocity be close to supersonic. An increase of Β the Β supersonic Β speed Β is possible due to design of the plasmatron nozzle especially the design feature and dimensions of the gas channel in which the plasma is formed. Also the modeling took into account dimensions of the plasma torch nozzle, i. e. the device should provide a supersonic plasma flow with the smallest possible geometric dimensions.As a result models of velocities and temperatures distribution in the plasma-forming channel at the minimum and maximum diameters of the channel were obtained. The design features and optimal geometric parameters of the plasmatron have been determined: the inlet diameter is 3 mm, the outlet diameter is 2 mm.The design of the executive equipment has been developed and designed which implements the investigated process of generating droplets of the micro- and nanoscale range. A plasmatron nozzle was manufactured which forms the necessary directions of plasma flows for the formation of surface waves on the metal droplet surface under the influence of instabilities. An algorithm has been developed for controlling of executive equipment that implements the process of generating drops of micro- and nanoscale range.ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ процСссов распрСдСлСния скоростСй ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Π² ΠΏΠ»Π°Π·ΠΌΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅ΠΌ ΠΊΠ°Π½Π°Π»Π΅, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ конструктивных особСнностСй ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² сопла ΠΏΠ»Π°Π·ΠΌΠΎΡ‚Ρ€ΠΎΠ½Π° являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· пСрспСктивных Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ процСссов распрСдСлСния скоростСй ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Π² ΠΏΠ»Π°Π·ΠΌΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅ΠΌ ΠΊΠ°Π½Π°Π»Π΅ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ конструктивных особСнностСй ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² сопла ΠΏΠ»Π°Π·ΠΌΠΎΡ‚Ρ€ΠΎΠ½Π°, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Ρ… Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² для образования Π½Π° повСрхности ΠΊΠ°ΠΏΠ»ΠΈ ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π»Π»Π° повСрхностных Π²ΠΎΠ»Π½ ΠΏΠΎΠ΄ дСйствиСм исслСдуСмых нСустойчивостСй.Одной ΠΈΠ· Π³Π»Π°Π²Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ являСтся рассмотрСниС процСсса формирования ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠΉ струи ΠΈ тСчСния элСктродуговой ΠΏΠ»Π°Π·ΠΌΡ‹. Для получСния ΠΌΠ΅Π»ΠΊΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… частиц ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π³Π»Π°Π²Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² являСтся ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ тСчСния ΠΏΠ»Π°Π·ΠΌΡ‹. НСобходимо, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ истСчСния ΠΏΠ»Π°Π·ΠΌΡ‹ Π±Ρ‹Π»Π° Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ свСрхзвуковой. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ скорости Π΄ΠΎ свСрхзвуковой Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠ±ΠΈΡ‚ΡŒΡΡ Π·Π° счёт конструкции сопла ΠΏΠ»Π°Π·ΠΌΠΎΡ‚Ρ€ΠΎΠ½Π°, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ конструктивной ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π°, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ образуСтся ΠΏΠ»Π°Π·ΠΌΠ°. Π’Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π»ΠΈΡΡŒ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ сопла ΠΏΠ»Π°Π·ΠΌΠΎΡ‚Ρ€ΠΎΠ½Π°, Ρ‚. Π΅. устройство Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ свСрхзвуковоС Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΡ‹ ΠΏΡ€ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΌΠ΅Π½ΡŒΡˆΠΈΡ… гСомСтричСских Ρ€Π°Π·ΠΌΠ΅Ρ€Π°Ρ….Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ исслСдований ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΌΠΎΠ΄Π΅Π»ΠΈ процСссов распрСдСлСния скоростСй ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Π² ΠΏΠ»Π°Π·ΠΌΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅ΠΌ ΠΊΠ°Π½Π°Π»Π΅ ΠΏΡ€ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π°Ρ… ΠΊΠ°Π½Π°Π»Π°. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ конструктивныС особСнности ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ гСомСтричСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ сопла ΠΏΠ»Π°Π·ΠΌΠΎΡ‚Ρ€ΠΎΠ½Π°: Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ Π½Π° Π²Ρ…ΠΎΠ΄Π΅ 3 ΠΌΠΌ, Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠΉ 2 ΠΌΠΌ.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΈ спроСктирована конструкция ΠΈΡΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ оборудования, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰Π°Ρ исслСдуСмый процСсс Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ капСль ΠΌΠΈΠΊΡ€ΠΎ- ΠΈ Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°. Π˜Π·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΎ сопло ΠΏΠ»Π°Π·ΠΌΠΎΡ‚Ρ€ΠΎΠ½Π°, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ направлСния ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² для образования Π½Π° повСрхности ΠΊΠ°ΠΏΠ»ΠΈ ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π»Π»Π° повСрхностных Π²ΠΎΠ»Π½ ΠΏΠΎΠ΄ дСйствиСм исслСдуСмых нСустойчивостСй. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ управлСния ΠΈΡΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰Π΅ΠΌ процСсс Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ капСль ΠΌΠΈΠΊΡ€ΠΎ- ΠΈ Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°

    Time-Fractional Optimal Control of Initial Value Problems on Time Scales

    Full text link
    We investigate Optimal Control Problems (OCP) for fractional systems involving fractional-time derivatives on time scales. The fractional-time derivatives and integrals are considered, on time scales, in the Riemann--Liouville sense. By using the Banach fixed point theorem, sufficient conditions for existence and uniqueness of solution to initial value problems described by fractional order differential equations on time scales are known. Here we consider a fractional OCP with a performance index given as a delta-integral function of both state and control variables, with time evolving on an arbitrarily given time scale. Interpreting the Euler--Lagrange first order optimality condition with an adjoint problem, defined by means of right Riemann--Liouville fractional delta derivatives, we obtain an optimality system for the considered fractional OCP. For that, we first prove new fractional integration by parts formulas on time scales.Comment: This is a preprint of a paper accepted for publication as a book chapter with Springer International Publishing AG. Submitted 23/Jan/2019; revised 27-March-2019; accepted 12-April-2019. arXiv admin note: substantial text overlap with arXiv:1508.0075
    • …
    corecore