63 research outputs found
Comment on ``Density-matrix renormalization-group method for excited states''
In a Physical Review B paper Chandross and Hicks claim that an analysis of
the density-density correlation function in the dimerised Hubbard model of
polyacetylene indicates that the optical exciton is bound, and that a previous
study by Boman and Bursill that concluded otherwise was incorrect due to
numerical innacuracy. We show that the method used in our original paper was
numerically sound and well established in the literature. We also show that,
when the scaling with lattice size is analysed, the interpretation of the
density-density correlation function adopted by Chandross and Hicks in fact
implies that the optical exciton is unbound.Comment: RevTeX, 10 pages, 4 eps figures fixed and included now in tex
Static Solitons of the Sine-Gordon Equation and Equilibrium Vortex Structure in Josephson Junctions
The problem of vortex structure in a single Josephson junction in an external
magnetic field, in the absence of transport currents, is reconsidered from a
new mathematical point of view. In particular, we derive a complete set of
exact analytical solutions representing all the stationary points (minima and
saddle-points) of the relevant Gibbs free-energy functional. The type of these
solutions is determined by explicit evaluation of the second variation of the
Gibbs free-energy functional. The stable (physical) solutions minimizing the
Gibbs free-energy functional form an infinite set and are labelled by a
topological number Nv=0,1,2,... Mathematically, they can be interpreted as
nontrivial ''vacuum'' (Nv=0) and static topological solitons (Nv=1,2,...) of
the sine-Gordon equation for the phase difference in a finite spatial interval:
solutions of this kind were not considered in previous literature. Physically,
they represent the Meissner state (Nv=0) and Josephson vortices (Nv=1,2,...).
Major properties of the new physical solutions are thoroughly discussed. An
exact, closed-form analytical expression for the Gibbs free energy is derived
and analyzed numerically. Unstable (saddle-point) solutions are also classified
and discussed.Comment: 17 pages, 4 Postscript figure
Theory of nonlinear optical properties of phenyl-substituted polyacetylenes
In this paper we present a theoretical study of the third-order nonlinear
optical properties of poly(diphenyl)polyacetylene (PDPA) pertaining to the
third-harmonic-generation (THG) process. We study the aforesaid process in
PDPA's using both the independent electron Hueckel model, as well as
correlated-electron Pariser-Parr-Pople (P-P-P) model. The P-P-P model based
calculations were performed using various configuration interaction (CI)
methods such as the the multi-reference-singles-doubles CI (MRSDCI), and the
quadruples-CI (QCI) methods, and the both longitudinal and the transverse
components of third-order susceptibilities were computed. The Hueckel model
calculations were performed on oligo-PDPA's containing up to fifty repeat
units, while correlated calculations were performed for oligomers containing up
to ten unit cells. At all levels of theory, the material exhibits highly
anisotropic nonlinear optical response, in keeping with its structural
anisotropy. We argue that the aforesaid anisotropy can be divided over two
natural energy scales: (a) the low-energy response is predominantly
longitudinal and is qualitatively similar to that of polyenes, while (b) the
high-energy response is mainly transverse, and is qualitatively similar to that
of trans-stilbene.Comment: 13 pages, 7 figures (included), to appear in Physical Review B (April
15, 2004
Classification of integrable hydrodynamic chains and generating functions of conservation laws
New approach to classification of integrable hydrodynamic chains is
established. Generating functions of conservation laws are classified by the
method of hydrodynamic reductions. N parametric family of explicit hydrodynamic
reductions allows to reconstruct corresponding hydrodynamic chains. Plenty new
hydrodynamic chains are found
A theoretical investigation of the low lying electronic structure of poly(p-phenylene vinylene)
The two-state molecular orbital model of the one-dimensional phenyl-based
semiconductors is applied to poly(p-phenylene vinylene). The energies of the
low-lying excited states are calculated using the density matrix
renormalization group method. Calculations of both the exciton size and the
charge gap show that there are both Bu and Ag excitonic levels below the band
threshold. The energy of the 1Bu exciton extrapolates to 2.60 eV in the limit
of infinite polymers, while the energy of the 2Ag exciton extrapolates to 2.94
eV. The calculated binding energy of the 1Bu exciton is 0.9 eV for a 13
phenylene unit chain and 0.6 eV for an infinite polymer. This is expected to
decrease due to solvation effects. The lowest triplet state is calculated to be
at ca. 1.6 eV, with the triplet-triplet gap being ca. 1.6 eV. A comparison
between theory, and two-photon absorption and electroabsorption is made,
leading to a consistent picture of the essential states responsible for most of
the third-order nonlinear optical properties. An interpretation of the
experimental nonlinear optical spectroscopies suggests an energy difference of
ca. 0.4 eV between the vertical energy and ca. 0.8 eV between the relaxed
energy, of the 1Bu exciton and the band gap, respectively.Comment: LaTeX, 19 pages, 7 eps figures included using epsf. To appear in
Physical Review B, 199
Excited states of linear polyenes
We present density matrix renormalisation group calculations of the Pariser-
Parr-Pople-Peierls model of linear polyenes within the adiabatic approximation.
We calculate the vertical and relaxed transition energies, and relaxed
geometries for various excitations on long chains. The triplet (3Bu+) and even-
parity singlet (2Ag+) states have a 2-soliton and 4-soliton form, respectively,
both with large relaxation energies. The dipole-allowed (1Bu-) state forms an
exciton-polaron and has a very small relaxation energy. The relaxed energy of
the 2Ag+ state lies below that of the 1Bu- state. We observe an attraction
between the soliton-antisoliton pairs in the 2Ag+ state. The calculated
excitation energies agree well with the observed values for polyene oligomers;
the agreement with polyacetylene thin films is less good, and we comment on the
possible sources of the discrepencies. The photoinduced absorption is
interpreted. The spin-spin correlation function shows that the unpaired spins
coincide with the geometrical soliton positions. We study the roles of
electron-electron interactions and electron-lattice coupling in determining the
excitation energies and soliton structures. The electronic interactions play
the key role in determining the ground state dimerisation and the excited state
transition energies.Comment: LaTeX, 15 pages, 9 figure
First Passage Time Distribution and Number of Returns for Ultrametric Random Walk
In this paper, we consider a homogeneous Markov process \xi(t;\omega) on an
ultrametric space Q_p, with distribution density f(x,t), x in Q_p, t in R_+,
satisfying the ultrametric diffusion equation df(x,t)/dt =-Df(x,t). We
construct and examine a random variable \tau (\omega) that has the meaning the
first passage times. Also, we obtain a formula for the mean number of returns
on the interval (0,t] and give its asymptotic estimates for large t.Comment: 20 page
- …